
1

Adaptation for Automated Drift Detection
in Electromechanical Machine Monitoring
Daisy H. Green, Aaron W. Langham, Rebecca A. Agustin, Devin W. Quinn, Steven B. Leeb

Abstract—Practical machine learning applications for stream-
ing data can involve concept drift (the change in statistical
properties of data over time), one-shot or few-shot learning
(starting with only one or a few examples for each class), a
scarcity of representative training data, and extreme verification
latency (only the initial dataset has ground-truth labels). This
work presents a framework for organizing signal processing and
machine learning techniques to provide adaptive classification
and drift detection. Nonintrusive load monitoring serves as an
ideal case study, as modern sensing solutions provide a wellspring
of electromechanical data sources. There is a lack of training
datasets that generalize across different load and fault scenarios.
Accordingly, training must be accomplished with a limited set of
data when deploying a nonintrusive load monitor to a new power
system. Also, loads can exhibit concept drift over time either due
to faults or normal variation. Nonintrusive load monitoring field
data is used as an illustrative case study to demonstrate the
proposed framework for adaptation and drift tracking.

Index Terms—concept drift, few-shot learning, stream learning,
power monitoring

I. INTRODUCTION

Many pattern classifiers fail to account for the time-
evolution or dynamic behavior of observed data [1]–[3].
Concept drift can obliterate the effectiveness of a classifier
trained on a static dataset [4], [5]. The order of observations
and the relationship between the timing and the evolution of
trends contain valuable information. A lack of representative
training data in an otherwise tractable domain exacerbates
these problems, as data often cannot be assumed to be
independent and identically distributed (i.i.d.) or stationary.
Decision boundaries in a feature space are frequently not
readily explainable or based in physical understanding.

Power monitoring of electromechanical loads is an illustra-
tive stream learning problem with practical industrial applica-
tions. Applications for energy efficiency, energy management,
condition-based maintenance, and fault detection and diagnos-
tics all rely on power data. Here, a nonintrusive load monitor
(NILM) provides a convenient means for power monitoring
which uses a single set of current and voltage sensors at the
feeder of an electrical sub-panel to monitor a collection of
loads. Effective nonintrusive load monitoring requires accurate
load signatures and load identification, i.e., the identification
of individual loads from the aggregate power stream [6].

Nonintrusive load monitoring is fundamentally a non-
stationary problem exhibiting concept drift. Changes in load
behavior can be related to various forms of concept drift. A
load’s electrical behavior may change over time, potentially
due to load aging and degradation. Variability is expected
even for a healthy load, arising from normal mechanical

variation, changing operating conditions, and environmental
factors. A sudden change in machine health is analogous to
sudden concept drift. A slow change over time is a form
of incremental concept drift. A return to a previous health
condition or operating state is similar to recurring concept
drift. The challenge in load identification is ensuring correct
results even amidst changing operating conditions and fault
scenarios. Most nonintrusive load monitoring research assumes
training data is forever representative of new data, without
regard to changing load behavior [7].

Many machine learning applications, such as image recog-
nition, rely on large, generalizable datasets. Although datasets
exist for nonintrusive load monitoring [8]–[10], they are gen-
erally restricted to healthy residential appliances, and cannot
generalize to the avalanche of loads that exist in practical
industrial and commercial sites. Thus, the training data for
a practical nonintrusive load monitoring classifier will likely
need to be collected by a NILM on the system of interest.
Nonintrusive load monitoring is therefore an example of few-
shot learning [11]. At its extreme, it becomes a one-shot
learning problem, in which the model must train starting with
only a single example for each load [12]. The few-shot nature
of the problem means that the limited training data is not likely
to be representative of the load’s long-term operation. As such,
deep learning models are prone to overfitting [13].

Many concept drift detection methods use error rates to
detect drift using labelled data [14], [15]. This is an unrealistic
constraint for real-time nonintrusive load monitoring, as it
would require periodic manual labelling of data. Instead,
extreme verification latency (i.e., ground-truth labels are never
received after the initial dataset) must be assumed. Relatively
little work has addressed semi-supervised or unsupervised drift
detection and adaptation [5]. An automated solution is desired.

Nonintrusive power monitoring is an illustrative one-shot
or few-shot learning problem that must handle concept drift
even without supervision after the initial dataset. However, in
literature it has largely been regarded as a stationary problem
[16]. This paper introduces a multi-level framework of clas-
sification techniques applicable to machine learning problems
facing the following challenges: 1) concept drift, 2) one-shot
or few-shot learning, and 3) extreme verification latency. In
order to be robust to outliers, our proposed method is designed
to handle incremental and recurring concept drift, whereas
sudden concept drift is out of this work’s scope. “Coarse” and
“fine” classification levels enhance existing pattern classifiers’
abilities. Given the scarcity of training data and few-shot
nature of the problem, coarse classifiers use extracted features
and physically realistic boundaries to avoid overfitting and

2

remain robust to load concept drift. Fine classifiers use higher-
dimensional data to resolve any ambiguities in the extracted
course classifier feature space. An online clustering algorithm
provides drift metrics to enable continual load identification
and diagnostics even in the presence of concept drift. These
steps work together to ensure confidence in classification,
given that ground-truth labels are not available after initializa-
tion. Experimental results are presented on real-world, non-
stationary data. Power data was collected over four years
aboard US Coast Guard Cutter (USCGC) SPENCER and used
for framework evaluation.

II. LITERATURE REVIEW

Drift detection algorithms can generally be divided into
error rate-based and data distribution-based [5], [17]. Ensem-
ble methods incorporate multiple classifiers. Error rate-based
approaches focus on tracking some error-related metric and
form the largest category of algorithms [5]. Common methods
include the Drift Detection Method (DDM) [18] and Early
Drift Detection Method (EDDM) [4], [19], which signal that
drift has occurred when there is a statistically significant
change in the error rate or distance between classification
errors, respectively. The drift detection method for online class
imbalance (DDM-OCI) [20] uses the reduction in minority-
class recall to detect drift, thus staying more robust to class
imbalance. Data distribution-based methods use a distance
metric to quantify the dissimilarity between the distribution
of historical data and new data [5], [17]. A drift is signaled
when the dissimilarity is proven to be statistically significant.

All error rate-based methods and most data distribution-
based methods are supervised approaches which assume that
an instance’s ground-truth class label is available immediately
after prediction. However, this is an unrealistic constraint in
many real-world applications. Labelling data is often a costly
process that involves manual labelling by domain experts.
With this motivation, some semi-supervised and unsupervised
drift detection algorithms have been proposed [14]. One semi-
supervised approach is the Semi-Supervised Adaptive Novel
Class Detection and Classification (SAND) algorithm [21].
This method bases drift detection on classifier confidence.
When drift is detected, a new model is created, using predicted
labels for instances with high confidence. True labels are
requested for instances with low classifier confidence. Another
approach is the Dynamic Selection Drift Detector algorithm
which bases drift detection on a pseudo-error rate [22]. It
requests true labels for instances that are near a set warning
level. Both of these methods request labels for a subset of data
after concept drift is detected.

For nonintrusive load monitoring, it is not realistic to as-
sume that even a subset of labelled data will be available when
requested. Extreme verification latency must be assumed. A
semi-supervised framework that handles drifting environments
with extreme verification latency is proposed in [23], referred
to as Compacted Object Sample Extraction (COMPOSE). It
uses a base classifier trained on the labelled data at the initial
step, then extracts core supports from the classified data to
retrain the classifier. The core supports represent the geometric

Fig. 1. Steady-state (ss), peak, and transient time features for an example
load turn-on transient.

center of each class distribution to serve as labelled instances.
Different core support shapes have been proposed such as an
α-shape [23] and Gaussian mixture models [24], while in [25],
all the classified samples are used instead of core support
extraction. For affinity-based COMPOSE [26], an affinity
matrix is formed between the labelled and unlabelled samples
and those with high similarity scores are classified and used to
retrain the classifier. While these methods do address extreme
verification latency, they are not applicable for one-shot or
few-shot learning. The methods assume a good base classifier
without mentioning how to choose such a classifier. The choice
of base classifier and its resulting decision boundaries has a
large affect on any subsequent classification, especially if it
overfits the limited initial data. To the best of our knowledge,
there is no work in literature that simultaneously addresses
incremental and recurring concept drift, one-shot or few-shot
learning, and extreme verification latency.

III. NONINTRUSIVE LOAD MONITORING

The utility of nonintrusive load monitoring for energy
management and condition-based maintenance relies on ac-
curate load identification, i.e., the identification of individual
loads from the aggregate power stream. Any data stream that
captures the electromechanical nature of a load and reflects
how the load consumes energy can potentially serve as a
feature for recognizing the load. Relevant data streams can, for
example, include voltages and currents, real (P), reactive (Q)
and apparent (S) power, higher order harmonic content (e.g.,
third, fifth, and seventh order harmonics), and impedances.

The NILM captures voltage and current waveforms sampled
at 8 kHz and processes this raw data into real and reactive
power at an output frequency equal to the line frequency (60
Hz) [27]. When a load energizes or changes state it manifests
in the power streams as transient behavior. This transient
behavior can be detected with a change-of-mean detector and
features can be extracted. For demonstration purposes, we
present a feature space consisting of the steady-state real
power (Pss), steady-state reactive power (Qss), the maximum
apparent power at inrush (Speak), and the transient time. These
features are shown in Fig. 1 for an example load turn-on
transient, representative of any power stream (e.g., P , Q, or
S).

While useful for load identification, the electrical character-
istics of a load can change over time. As operating conditions

3

change, power varies with reasonable variation of mechanical
load operation [28]. Changes or deviations in power could
also indicate the beginning of a “soft fault,” or the gradual
degradation of equipment performance. These changes create
variability within the feature space that may make it difficult
for a NILM to recognize a load. At the same time, this
variability may be a useful prognostic indicator. Our goal is
twofold: 1) accurate load identification even in the presence of
load power variation and drift, and 2) tracking changes in load
power characteristics to use for fault detection and diagnostics.

IV. CLASSIFICATION AND DRIFT DETECTION

The framework consists of four steps for classifying and
detecting drift. This multi-level framework ensures a high
level of confidence in labelled events since ground-truth labels
are assumed to not be available. Events that do not pass the
multi-level check are determined unclassifiable. A one-vs-all
check, referred to as the “preliminary” check, is used first
as a “negative” classifier that eliminates the classification of
physically implausible events. This first step appeals to the
physical expectations for load behavior to ensure physically
realistic boundaries. Next, classification operates with two
levels of granularity. The two levels are designed to improve
classification while gradually increasing dimensionality as
needed. The first, “coarse” level examines high-level features
extracted from the waveform (e.g., features such as peak and
steady-state power) to avoid overfitting due to the few-shot
nature of the problem. The second, “fine” classification step
uses a more in-depth examination of sampled data (e.g., time-
domain shape recognition). That is, the coarse classifier uses
extracted features from the power waveform, whereas the fine
classifier uses windows of the time-domain power waveform
directly. Finally, load drift is detected and tracked using “drift
clusters” to characterize evolving load behavior and concept
drift. The concept of an “exemplar” is defined as a load event
that is representative of a load’s short-term behavior. Each load
has an “initial exemplar,” i.e., the initial load event. Each load
also has an “active exemplar,” which is updated to represent
the most recent operation state based on the drift clusters.

A. Framework Overview

The framework process is presented in Algorithm 1. To
initialize the framework, a list of all load classes is obtained
and denoted as L. Initial data is collected and the initial
exemplar is set for each load to be the load’s first event.
During the initialization step, if there is only a single event
for each load, the active exemplar is set to be the initial
exemplar. Otherwise, the drift clustering algorithm is run on
the load’s initial data to determine the active exemplar. Then,
the preliminary and coarse boundaries are drawn in the feature
space. When features that do not have common units are used
in this framework, min-max normalization is performed so that
Euclidean distances in the feature space are well-defined. For
each feature axis, i, the range of the data is transformed into
[0, 1] through the transformation,

xis =
xi − ximin

ximax − ximin

. (1)

Algorithm 1 Algorithm for organizing classifiers.
1: L← list all loads
2: for each l ∈ L do
3: Set initial exemplar
4: Set active exemplar
5: Set up preliminary and coarse boundaries
6: end for
7:
8: while True do
9: x← incoming feature vector

10:
11: M ← PreliminaryCheck(x, L)
12: if M is empty then
13: Determine x as unclassifiable
14: continue
15: end if
16:
17: N ← CoarseClassifier(x, M)
18: if N contains only one load then
19: Classify x as the load in N
20: TrackDrift(x)
21: continue
22: end if
23:
24: P ← FineClassifier(x, N)
25: if P contains only one load then
26: Classify x as the load in P
27: TrackDrift(x)
28: continue
29: end if
30: Determine x as unclassifiable
31: end while
32:
33: function TrackDrift(x)
34: Update drift clusters with x
35: Update active exemplar
36: Update preliminary and coarse boundaries
37: end function

Min-max parameters are obtained using the initialization data.
As a result, it is possible that incoming data may be scaled
outside [0, 1].

Once initialization is complete, every incoming feature
vector is initially examined via the preliminary check. A list
of loads that pass the check is generated and denoted as
M . There are two high-level possibilities that could occur:
1) M is empty, indicating the feature vector falls outside
any known load preliminary boundaries, and 2) M contains
at least one load. If M is empty, the event is considered
unclassifiable. That is, the event does not go through the
remaining checks, and the procedure moves on to the next
incoming feature vector. This is represented in Algorithm 1
with the continue statement. If M is not empty, the loads that
passed the preliminary check are passed to the coarse classifier.

With a power sampling rate of 60 Hz, a transient can easily
have a dimensionality on the order of several hundreds. The
few-shot nature of the problem implies that working with such

4

Fig. 2. CPP pump preliminary boundary, coarse boundary, and drift clusters
for the Qss versus Pss feature space.

a high-dimensionality feature space may lead to overfitting,
also known as the curse of dimensionality [29]. Thus, the
coarse classifier operates on the lower-dimensionality fea-
ture space of extracted features. The coarse level performs
classification using one-vs-all classifiers for each load. This
permits overlapping load decision boundaries and allows for
the possibility that a load’s decision boundaries can change
over time independent of other loads. The coarse classifier
returns a list of loads denoted as N . There are three possible
outcomes for the coarse classifier: 1) N is empty, indicating
that the feature vector falls outside any known load coarse
boundaries (but still within a preliminary boundary), 2) N
contains exactly one load, and 3) N contains more than one
load, indicating overlap of the coarse boundaries. When a
feature vector is inside a single load coarse boundary, it is
classified as that load without running the fine classifier. If N
contains zero loads, the fine classifier is run on the M loads
that passed the preliminary check. If N contains more than
one load, the fine classifier is run on those N loads.

The fine classifier uses the higher-dimensionality transients
if the coarse classifier is unable to confidently identify one
load. The fine classifier returns a list P , which either contains
a single load or is empty. If P contains a single load, the
event can be classified as that load. Otherwise, the event
is considered unclassifiable. When an event is classified, a
clustering algorithm is run using geometric distances in an
easily-conceivable extracted feature space. This makes possi-
ble the tracking of drifting power signatures and designation
of the active exemplar. The preliminary boundaries, coarse
classifiers, and fine classifiers are adapted as necessary to
track diagnostic changes and ensure accurate load recognition.
Example preliminary boundaries, coarse boundaries, and drift
clusters are shown in a two-dimensional feature space for two
shipboard loads, the controllable pitch propeller (CPP) pump
and graywater pump, in Fig. 2 and Fig. 3, respectively.

B. Preliminary Check

Decision boundaries created by classifiers are not guaran-
teed to be compact or physically realistic. Thus, it is necessary
to establish which loads an incoming feature vector could
plausibly belong to before attempting classification. For the
domain of power monitoring and incremental concept drift,

Fig. 3. Graywater pump preliminary boundary, coarse boundary, and drift
clusters for the Qss versus Pss feature space.

it is reasonable to assume that features that are physically
relevant to the load’s drift will change gradually. As a result,
an extracted feature space-based “preliminary check” rules
out loads that are physically implausible candidates for a
given load event. An N -dimensional hyperellipsoid boundary
is created for each load in the feature space, where N is the
number of dimensions of the feature space. The hyperellipsoid
can represent a spread of points with a small number of
parameters [30]. A hyperellipsoidal region can be represented
by

(x−m)TR(x−m) ≤ 1, (2)

where m is an N × 1 vector representing the centroid of
the hyperellipsoid and R is a real symmetric positive-definite
N × N matrix representing the shape and orientation of the
hyperellipsoid. For the preliminary check, any point x, satisfy-
ing the inequality in Eq. (2), is either inside or on the surface
of the hyperellipsoid [31]. Estimates of variance in observed
load behavior can define a loose hyperellipsoidal boundary
where load observations can be expected to be located with
high confidence. Using principal component analysis (PCA)
[32], the variance of the data can be obtained in each of the
principal component directions, as well as the mean in each
feature dimension. PCA also yields a “transformation matrix”
whose rows are each principal component axis. The standard
deviations of the data in each principal component axis are
obtained as the positive square root of the variances. A tunable
number of standard deviations, denoted here as A, is chosen
by the user to generate the radii for the hyperellipsoid. For
the USCG vessel, A = 28 standard deviations has proven
effective for construction of hyperellipsoidal boundaries for
the preliminary check.

Since PCA cannot be reliably used with few data points, the
implementation does not set up a given load’s PCA hyperellip-
soid until 10 events have been recorded for the load. Before
then, a provisional preliminary boundary is used, consisting
of an unrotated N -dimensional hyperellipsoid whose radius in
axis i is equal to max(0.2, xi), where xi is the initial feature
vector’s value in that axis (using min-max normalization). By
setting a minimum axis value of 0.2, events close to a feature
axis (e.g., heaters that consume no reactive power) are not
assigned impractically small preliminary boundaries.

5

Only loads whose preliminary boundaries contain the in-
coming event’s feature vector are considered as candidate
loads for the following coarse classifier. If no loads pass
the preliminary check, then the load event is considered
unclassifiable. Every time a new event is classified to the load,
the load’s preliminary boundary fits a new PCA hyperellipsoid
to the load data.

C. Coarse Classifier

Coarse boundaries drawn in the feature space can further
reduce the number of candidate loads and potentially perform
final classification. Since drift in the feature space can result
in load feature vectors occupying the same general space,
the coarse classifier is chosen to be a one-vs-all rather than
multiclass classifier. Once a list of candidate loads has been
obtained from the preliminary check, each candidate load’s
coarse boundary is checked as to whether it contains the
incoming feature vector. If only one candidate load’s boundary
contains this feature vector, the incoming event is classified to
that load. If multiple loads’ coarse boundaries contain this
feature vector, then there is not yet sufficient information to
determine which of these loads to classify the event to. These
containing loads are retained as candidate loads for the fine
classifier. If no loads’ coarse boundaries contain the feature
vector, then no classification is made, and the same list of
candidate loads are used as the input for the fine classifier.

The coarse classifier should be chosen such that it yields a
binary result. Classifiers such as deep neural networks (DNN)
and random forests (RF) provide nonlinear boundaries that
can take on complicated shapes. Another option is to use
the N -dimensional standard deviation hyperellipsoid described
earlier, but with a much smaller number of standard deviations.
This is the method demonstrated in this work, using 7 standard
deviations. Eq. (2) is used to determine which hyperellipsoids
contain a given feature vector. This method has the advantage
that the hyperellipsoid can likely be obtained faster than a
DNN or RF can be trained, and only uses data from the load
in question (as opposed to the DNN and RF, which require
other load data to train for binary classification).

Just as for the preliminary boundaries, some amount of data
must be collected until a coarse classifier can be trained. Until
10 events have been recorded for a load, the same technique
used for the provisional preliminary boundaries is used, but
here the radii of the N -dimensional hyperellipsoids are set
to max(0.05, 0.25 · xi) (using min-max normalization). Fig. 4
shows an example three-dimensional feature space with three
shipboard loads and hyperellipsoidal coarse boundaries for
demonstration. If an event is within only a single load coarse
boundary, such as a point inside the graywater pump coarse
boundary, it can be classified as that load. If an event is within
multiple load coarse boundaries, such as a point that is inside
both the CPP pump and air compressor coarse boundaries, that
event goes to the fine classifier. If an event is not within any
coarse boundaries, but is still within a preliminary boundary, it
also goes to the next and final classifier. Using hyperellipsoids
as coarse classifiers involves fitting a new PCA hyperellipsoid
to the load data every new event for that load.

Fig. 4. Coarse boundaries drawn in the Pss, Speak and Qss feature space
for the CPP pump, air compressor, and graywater pump.

D. Fine Classifier

For feature vectors that were in multiple coarse load bound-
aries or were not in any coarse load boundaries, but were
within at least one preliminary load boundary, a multiclass
fine classifier is run as the final classification step. The
fine classifier operates on higher-dimensional data than the
coarse classifier in order to resolve overlap in the extracted
feature space. The fine classifier relies on having an accurate
representation of recent load operation through the active
exemplar and drift clusters. This work uses six seconds of
the real and reactive power time-domain transients associated
with the incoming event as the fine classifier feature space.
For fine, time-series classifiers, this work demonstrates both a
correlation matching algorithm [6] and gated recurrent units
(GRUs) [33].

Using a correlation matching algorithm requires only a
single exemplar transient for each load, i.e., that of the active
exemplar. This method can be used for one-shot learning,
in which only a single event is available for each load.
The initial exemplar is used as the active exemplar until the
drift clustering algorithm identifies a new active exemplar. To
resolve a set of loads using the correlation matching algorithm,
the incoming load event’s transient is matched to each of the
candidate loads’ active exemplars’ transients, and a correlation
score is generated for each. Consider two sampled waveforms
f and g, where f is an observed waveform and g is a load
exemplar’s transient. The correlation score, C, is:

C =

∣∣∣∣∣1− (f − f̄) · (g − ḡ)

|g − ḡ|2

∣∣∣∣∣ (3)

where f̄ and ḡ are the mean of f and g, respectively, and
are subtracted from the original signals in order to remove
the dc offsets. When C approaches zero, this indicates that
the exemplar and observation transients match in both shape
and amplitude [6]. The minimum correlation score for the
candidate loads is found. If it is less than a tunable threshold,
the event is classified to the corresponding load. For events
within multiple coarse boundaries, the threshold is 0.25. If

6

an event is not within any coarse boundaries and the fine
classifier uses candidate loads from the preliminary check, a
lower maximum correlation score of 0.10 is used, since there
was originally less confidence in the candidates.

When using a GRU, the initial training cannot be done on
a single event. For these classifiers, it is assumed that there
is sufficient data to train an initial classifier. As shown in
Section V, an adaptive GRU approach is demonstrated for
this work. The initial multiclass model is implemented with
a GRU layer with 50 ReLU-activated neurons, then a densely
connected layer with 30 ReLU-activated neurons, and finally
a softmax-activated layer. The training approach used Adam-
optimized backpropagation with a learning rate of 0.001 and
categorical crossentropy as the loss function. The initial data
was split into 80% training and 20% validation with data
stratification. A batch size of 64 was used for mini-batch
gradient descent. Validation loss was used for early stopping,
such that after fifteen epochs of no significant improvement,
training was stopped.

After an initial multiclass GRU model is trained, the model
must be incrementally retrained in order to learn the de-
tected load drift. However, models retrained using only recent
data often suffer from “catastrophic forgetting,” that is, the
degradation of performance on previous tasks when learning
new tasks [1], [34]. One approach to prevent catastrophic
forgetting is the replay-based or rehearsal approach, in which
some of the previous samples are stored and repeatedly
reused when the model is retraining on new data [1], [35],
[36]. Another approach is regularization-based, in which a
penalty consolidates the important weights, and selectively
slows down learning on those weights [37]. The third approach
is dynamic architecture-based, which iteratively updates the
network architecture by network masking or network pruning
[38]. In this work, the first method is applied, in which a
memory buffer is used to store a limited number of transients.
For each load, the thirty most recent transients are stored in
a temporary memory buffer. Every time a new drift cluster
is formed for a given load, the twenty most recent transients
are stored in a permanent memory buffer. This is analogous
to storing the active exemplar for the correlation matching
technique, assuming that the load drift is incremental. Every
time a new drift cluster is formed, backpropagation is run
on the model using every load’s temporary and permanent
memory buffer of transients. A learning rate of 0.0001 is used.
This is smaller than the learning rate of the initial classifier to
ensure only incremental improvements are being made. The
same data stratification split is used as for the initial classifier.
Training is stopped after five epochs of no improvement in the
validation loss.

For each load the number of transients stored is at most
30 + 20 · x, where x is the number of drift clusters for that
load. Using the same size temporary memory buffer for each
load helps prevent biasing the classifier towards the class with
the must abundant number of recent events. Classification
with a GRU classifier uses the output score of the softmax
output layer associated with each candidate load to perform
classification. Specifically, for the list of candidate loads in
multiple coarse boundaries, the event is classified as the load

Algorithm 2 Algorithm for drift clustering.
Input: r0: micro-cluster radius
Input: γ: density threshold
Output: ST: short-term drift metric
Output: LT: long-term drift metric

1: E ← incoming event
2: dmin ← distance of E to closest micro-cluster center
3: if dmin ≤ r0 then
4: Add E to nearest micro-cluster
5: Set active exemplar as nearest micro-cluster exemplar
6: if dmin ≤ r0

2 then
7: Update micro-cluster center
8: end if
9: else

10: Add E to outliers
11: y ← outlier with most outliers within distance r0
12: Z ← outliers within distance r0 of y
13: if Z contains at least γ points then
14: New micro-cluster ← Z
15: New micro-cluster center ← mean of Z
16: New micro-cluster exemplar ← E
17: Set E as active exemplar
18: end if
19: end if
20: ST ← distance from E to active exemplar
21: LT ← distance from E to initial exemplar
22: return ST, LT

with the maximum softmax output score. If an event is not
within any coarse boundaries, the event is classified with the
load with the maximum softmax output score, as long as the
score is greater than 0.5.

E. Drift Clusters
Over time, as a load ages or operating conditions change,

load observations may drift away from the initial exemplar,
for both the coarse classifier and the fine classifier. Keeping
track of load concept drift and distribution changes serves
an important role for classification. It is especially important
due to the few-shot nature of the problem, as the initial
dataset likely does not capture a load’s possible drift. In the
framework, drift is tracked by designating certain load events
as representative exemplars. Furthermore, the distance in the
feature space between an observation and an exemplar serves
as an important metric for diagnostics [39].

A density-based online clustering algorithm is used in order
to determine the representative exemplars. Example density-
based clustering algorithms include clustering online data in
arbitrary shapes clusters (CODAS) and clustering evolving
data streams into arbitrary shapes (CEDAS) [40], [41]. These
algorithms both use the concept of a micro-cluster, which is
formed based on local density. In this context, each micro-
cluster represents a load drift cluster. When a new micro-
cluster is formed, a new exemplar is designated to represent
it.

The density-based clustering can be focused on the features
that are most significant for recognizing load drift. As an

7

illustrative example, steady-state power level changes (Pss

and Qss) often indicate an underlying gradual shift in load
performance. Since these features both use power units, min-
max normalization is not used for this clustering process.
The clustering and drift tracking process is summarized in
Algorithm 2. Each load’s initial exemplar is set as its first
event. Until a load’s first drift cluster is formed, the load’s
active exemplar is its initial exemplar. After every new data
sample labelled by the preliminary check, coarse classifier,
and fine classifier, as outlined above, the clustering algorithm
is run. A micro-cluster is formed when an area in the feature
space reaches a fixed density threshold, γ, in this work fixed
to five points for all loads. The density threshold should be
chosen based on an estimate for when events can be deemed
a repeatable occurrence. For example, in power monitoring,
a single event would not be enough to declare a new drift
state. If a load has energized five times in the same area
in the feature space, it is more likely to be a repeatable
event. The micro-cluster radius, r0 is calculated for each load
as max(0.5 kW, Pss/10), where Pss is the steady-state real
power of the first load event. The micro-cluster radius should
be chosen based on expected normal variation. For power
monitoring, we set a minimum radius of 0.5 kW so that loads
with small steady-state values are not assigned impractically
small micro-cluster radii. For larger loads, we select 10% of
the steady-state value to represent incremental drift. When the
criteria for creating a micro-cluster are met, the most recent
event is selected as the exemplar to represent the load state
for events that belong to the micro-cluster.

In the original CEDAS algorithm, a decay rate is used
to remove defunct micro-clusters. However, in our modified
approach, each of the previously active micro-clusters is
maintained. This is necessary for continued load diagnosis and
to take into account recurring concept drift. That is, the micro-
clusters are never removed, merged, or split once identified.
The micro-cluster center is updated when a new event is added
that is within half the radius of the micro-cluster. In addition
to keeping all previous active exemplars, a short-term and
long-term distance metric are calculated, where the distance
is defined as the Euclidean distance within the steady-state
feature space. The short-term metric is the distance from an
incoming event’s feature vector to the active exemplar’s feature
vector and should remain small for incremental drift. The long-
term metric is the distance from the incoming event’s feature
vector to the initial exemplar’s feature vector. This metric is
useful for load diagnostics, as an increasing long-term drift
metric provides indication of possible load degradation. These
drift metrics are demonstrated in Section VI.

F. Unclassifiable Loads

The framework is designed with the assumption that ground-
truth labels will never be available. The four-step process
ensures high confidence in those that are classified, in order
to prevent the cascading result of an incorrect label. There are
several underlying reasons for why an event could be unclas-
sifiable. First, it could simply be the result of an imperfect
event detector, and the detected event may not correspond to

TABLE I
MONITORED LOADS

System Equipment Power # of
Rating Events

Port-side MPDE
keep-warm system

Jacket water heater 9.0 kW 117
Lube oil heater 12.0 kW 278
Prelube pump 2.2 kW 242

Port-side SSDG
keep-warm system

Jacket water heater 7.5 kW 1178
Lube oil heater 1.3 kW 2732

Fuel oil purifier
system

Centrifugal motor 9.5 kW 1131
Feed pump 2.6 kW 341

Additional engine
room loads

Controllable pitch
propeller pump

7.5 kW 561

Graywater pump 3.7 kW 2000
Bilge and ballast
pump

5.6 kW 213

Auxiliary room loads Air compressor 7.5 kW 1390
Air conditioner 17.0 kW 74

an actual load event. It is important that the model not use
these events, so as to not be impacted by noisy data. Second,
if a feature vector is in multiple coarse load boundaries and is
further unidentifiable by the fine classifier, it likely means both
the extracted feature space and transient features need more
dimensions in order to increase separability. Third, the event
could be an instance of a new or unknown load class. Although
out of the scope of this work to automatically identify a new
load class, a human operator can identify and label a new
load that was added to the system, or that was not accounted
for during the NILM installation. The new load would then
be added to the load list, L, and initialized as described
in Algorithm 1 by setting the initial and active exemplars
and preliminary and coarse boundaries for the load. When
using adaptive correlation matching as the fine classifier, drift
clusters can be used to identify the exemplar for correlation
matching. When using an adaptive GRU, the GRU can be
incrementally trained with the new labelled data. Finally,
it is possible that the unclassifiable load is the result of a
load experiencing a sudden fault leading to a sudden concept
drift. If the fault causes its events to be outside the load’s
feature space boundaries and also unrecognizable by the fine
classifier, it is an instance of sudden concept drift, and operator
supervision will again be necessary to identity the faulty load.

V. EXPERIMENTAL RESULTS

The framework was tested on a nonintrusive load moni-
toring dataset containing observations from three sub-panels
on USCGC SPENCER: the port-side engine room sub-panel,
starboard-side engine room sub-panel, and auxiliary room sub-
panel. Data was collected over the course of four years, with
gaps in the data during some of the in-port periods. Many of
the loads are part of larger controlled systems, including the
port-side main propulsion diesel engine (MPDE) keep-warm
system, the port-side ship service diesel generator (SSDG)
keep-warm system, and the fuel oil purifier (FOP) system.
The remaining loads are additional engine room loads and
auxiliary room loads. Table I lists the individual loads, their
rated powers, and the number of events in the dataset. For
the graywater pump, a random subset of 2000 events from the
dataset was used to keep the event count on the same order
as the remaining loads. Fig. 5 shows the initial time-domain

8

0 1 2
Time (s)

0

2

4

6

8

10

P
ow

er
(k

W
)

MPDE Jacket water heater

P

Q

0 1 2
Time (s)

0
2
4
6
8

10
12

P
ow

er
(k

W
)

MPDE Lube oil heater

P

Q

0 1 2
Time (s)

0

5

10

15

P
ow

er
(k

W
)

MPDE Prelube pump

P

Q

0 1 2
Time (s)

0

2

4

6

8

P
ow

er
(k

W
)

SSDG Jacket water heater

P

Q

0 1 2
Time (s)

0.0

0.5

1.0

1.5

P
ow

er
(k

W
)

SSDG Lube oil heater

P

Q

0 1 2
Time (s)

0

20

40

60

80

100

P
ow

er
(k

W
)

FOP centrifuge

P

Q

0 1 2
Time (s)

0

5

10

15

20

P
ow

er
(k

W
)

FOP Feed pump

P

Q

0 1 2
Time (s)

0

10

20

30

40

50

P
ow

er
(k

W
)

CPP pump

P

Q

0 1 2
Time (s)

0

5

10

15

20

25

P
ow

er
(k

W
)

Graywater pump

P

Q

0 1 2
Time (s)

0

10

20

30

40

50

P
ow

er
(k

W
)

Ballast pump

P

Q

0 1 2
Time (s)

0

10

20

30

40

50

P
ow

er
(k

W
)

Air compressor

P

Q

0 1 2
Time (s)

0

20

40

60

80

100

P
ow

er
(k

W
)

Air conditioner

P

Q

Fig. 5. Zoomed-in view of the initial time-domain transients for each of the loads in the dataset.

transients for each of the loads. Since the data collection for
the auxiliary room panel was started later than the port and
starboard sub-panels, the data was aligned such that the start
of data for each sub-panel was set to t = 0.

The extracted features for the preliminary check and coarse
classifier include the steady-state real power (Pss), steady-state
reactive power (Qss), the maximum apparent power at inrush
(Speak), and transient time. Changes in steady-state levels are
calculated as the difference between the median values over
∆tM length windows before and after an identified event,
where tM = 0.5 seconds. The maximum power at inrush is
defined as the difference between the maximum value of the
transient and the median value of a ∆tM length window before
the transient. For transient time, first a ten-point rolling mean
is applied to the first difference stream of apparent power. If
there is a first difference of −500 W or less, indicating a large
negative slope, the steady state is determined to be after this
value. Then, if the rolling mean of the first difference stream is
less than 5 W, it indicates that the apparent power stream has
reached steady state. The feature axes are normalized with
min-max normalization. The fine classifier features are six
seconds of the P and Q waveforms, centered at the detected
transient.

A. Two-Dimensional Static Classifier
First, a subset of these loads are used in a two-dimensional

feature space of Pss and Qss as illustration of the reduced
performance of a static classifier due to changing load behavior
over time. A deep neural network (DNN) is trained and used as
a classifier for six loads from USCGC SPENCER. A limited
dataset is used for training consisting of the first month of
data after installation of the NILM. This is a practical scenario
for nonintrusive load monitoring classifiers, as algorithms may
need to be trained on data as it arrives in time. Ideally, the end
user will not need to wait for years of data collection before the
utility of NILM can be realized for energy scorekeeping and
fault detection. The DNN was implemented with two hidden
layers of 50 and then 30 ReLU-activated neurons, followed by
a softmax-activated layer. The DNN was trained with Adam-
optimized backpropagation and categorical crossentropy as the

Fig. 6. Qss versus Pss decision boundaries, trained on a limited dataset.
The full dataset is plotted.

loss function. The data was split into 80% training and 20%
validation with data stratification. Mini-batch gradient descent
was used with a batch size of 64. The validation loss was used
as a stopping criterion, such that training was stopped after
fifteen epochs in which the validation loss did not significantly
improve.

For these six loads, the main propulsion diesel engine
(MPDE) prelube (PL) pump, fuel oil purifier (FOP) centrifugal
motor, FOP feed pump, controllable pitch propeller (CPP)
pump, graywater pump, and bilge and ballast pump, the trained
model had perfect classification for all load events in the
validation dataset. When the model was tested on the rest
of the data collected on the USCG vessel (from October
2016 through September 2020) there was significantly reduced
performance due to the drifting in the feature space of several
loads. Fig. 6 shows the decision boundaries from the model
trained on the training data with the data points from October
2016 through September 2020 plotted. The CPP pump has
drifted into the FOP classification region, the MPDE PL
pump has drifted into the FOP feed pump and graywater
pump classification regions, and the bilge and ballast pump

9

has drifted into the graywater pump, MPDE prelube pump,
and FOP feed pump classification regions. This performance
degradation is due to the fact that with limited data, there is
usually more than one large-margin low-density separator that
can accurately classify the load points. There could be many
separators that are consistent with the limited labelled data,
but are very diverse with respect to the feature space [42].
It is difficult to determine the optimal separator based on the
limited data alone.

B. Framework Verification

Two main scenarios are tested with the adaptive framework.
In the first, classification with the framework starts with only
a single event for each load, also known as one-shot learning
[12]. In the second scenario, classification with the framework
begins after one month of data has been collected by the
NILM and all events have been hand-labelled. To use the
framework in the first scenario, with only a single exemplar
for each load, provisional preliminary and coarse boundaries
are implemented in the four-dimensional feature space, as
described in Section IV. Each load’s initial exemplar is set
to be that load’s active exemplar for the correlation matching
fine classifier, to start with. For each load, after 10 events
have been classified, the preliminary and coarse boundaries
are updated by fitting PCA hyperellipsoids to the classified
load data. Algorithm 2 is used to identify and update the
active exemplar. For the second scenario, the preliminary and
coarse boundaries are implemented as PCA hyperellipsoids
and the two fine classifiers described in Section IV-D are
tested: correlation matching and a gated recurrent unit (GRU)
classifier. The correlation matching algorithm is deterministic,
so it is only run once. Since the GRU training is stochastic,
the test using the GRU fine classifier is run ten times and
averaged.

Several static techniques are also trained and tested. Since
the static techniques cannot be trained well using only a
single data point for each load, these classifiers are only used
for the second scenario, i.e., after one month of data has
been collected. A DNN classifier and support vector machine
(SVM) classifier are trained using the same four-dimensional
feature space that the preliminary checks and coarse classifiers
use: Pss, Qss, Speak, and transient time. A GRU classifier is
trained using the same fine feature space as the fine classifier,
six seconds of P and Q. For all three models, the data was split
into 80% training and 20% validation, with data stratification
to allocate samples evenly based on sample class. For the
SVM classifier, a radial basis function kernel is used with a
regularization parameter of one. The kernel coefficient is one
over the number of features times the variance of the training
data. Both the DNN and GRU were trained with Adam-
optimized backpropagation with a learning rate of 0.001 and
categorical crossentropy as the loss function. The validation
loss was used as a stopping criterion, such that training was
stopped after fifteen epochs of no significant improvement.
The DNN was implemented with two hidden layers of 50
and then 30 ReLU-activated neurons, followed by a softmax-
activated layer. The GRU was implemented with a GRU layer

with 50 ReLU-activated neurons, then two densely connected
layers with 30 ReLU-activated neurons each, and finally a
softmax-activated layer. For the DNN and GRU, ten different
models were trained and the results were averaged. The tests
are summarized below:

• Starting with a single event for each load (one-shot)
– Adaptive correlation matching

• Starting with one month of data
– Adaptive correlation matching
– Adaptive GRU
– Static SVM
– Static DNN
– Static GRU

The precision, recall, and F1-score are calculated for each
load,

precision =
TP

TP + FP
, recall =

TP

TP + FN
,

F1-score = 2 · precision · recall
precision+ recall

,
(4)

where TP is the number of true positives, FP is the number of
false positives, and FN is the number of false negatives [43].
Precision is the proportion of reported events that are correct.
Recall is the proportion of load events that are reported. The
F1 score is the the harmonic mean of precision and recall.
Precision and recall values of one indicate perfect performance
in identifying a specific class, leading to “perfect” F1 scores
equal to one. Lesser values indicate imperfect classification.
The results are presented in Table II. The adaptive classifiers
show improved performance over the static classifiers for
several loads, including the CPP pump, MPDE prelube pump,
and bilge and ballast pump. The one-shot scenario using
adaptive correlation matching performs suboptimally on only
the FOP centrifugal motor, due to an abnormal load operating
pattern described in the following section. Fig. 7 shows two
normalized confusion matrices to compare the adaptive versus
static classifiers starting with one month of data. Fig. 7a shows
the results of adaptive correlation matching and Fig. 7b shows
the results of the static SVM. For the static SVM, the CPP
pump is often misclassified as the FOP centrifugal motor, the
MPDE prelube pump is often misclassified as the graywater
pump, and the bilge and ballast pump is often misclassified as
the MPDE prelube pump and graywater pump. These results
are consistent with the demonstration in the previous two-
dimensional demonstration of Fig. 6. The separability issues
persist even in higher dimensions.

VI. PHYSICAL INTERPRETATION OF RESULTS

The improved performance of the adaptive framework over
the static classifiers can be explained by analyzing the physical
operation of these loads over time. Load electrical char-
acteristics are sometimes dependent on changing operating
conditions. These conditions can manifest in the feature space
as concept drift, which the adaptive methods seek to cope with.
The drift metrics tracked by the framework are also useful
prognostic indicators.

10

TABLE II
ACCURACY OF CLASSIFYING ON-EVENTS

One-Shot Trained with One Month of Data
Adaptive Adaptive Static

Correlation Correlation
Matching Matching GRU SVM DNN GRU

Equipment # of Events F1 score # of Events F1 score
MPDE Jacket water (JW) heater 116 0.991 91 0.978 0.997 0.995 0.991 0.830
MPDE Lube oil (LO) heater 277 0.993 268 0.992 0.996 0.998 0.995 0.980
MPDE Prelube pump 241 0.966 235 0.998 0.998 0.884 0.903 0.675
SSDG Jacket water (JW) heater 1177 1.0 956 1.0 1.0 1.0 1.0 0.993
SSDG Lube oil (LO) heater 2731 0.999 2705 0.999 0.999 0.999 0.999 0.992
FOP Centrifugal motor 1130 0.714 1103 0.994 0.996 0.968 0.972 0.934
FOP Feed pump 340 0.974 329 1.0 1.0 0.953 0.910 0.814
CPP pump 560 0.991 530 0.982 0.971 0.925 0.934 0.830
Graywater pump 1999 0.999 1965 0.999 0.999 0.990 0.990 0.944
Bilge and ballast pump 212 0.990 208 0.998 0.972 0.838 0.791 0.540
Air compressor 1389 0.996 229 0.983 0.954 0.977 0.986 0.874
Air conditioner 73 0.993 39 0.987 0.997 1.0 0.996 0.920

MPD
E J

W Hea
ter

MPD
E L

O Hea
ter

MPD
E P

rel
ub

e P
um

p

SS
DG JW

 Hea
ter

SS
DG LO

 Hea
ter

FO
P C

en
trif

ug
e

FO
P F

ee
d P

um
p

CPP
 Pu

mp

Gray
wate

r P
um

p

Balla
st

Pu
mp

Air C
om

pre
sso

r

Air C
on

dit
ion

er

Uncl
ass

ifie
d

Predicted

MPDE JW Heater

MPDE LO Heater

MPDE Prelube Pump

SSDG JW Heater

SSDG LO Heater

FOP Centrifuge

FOP Feed Pump

CPP Pump

Graywater Pump

Ballast Pump

Air Compressor

Air Conditioner

Ac
tu

al

0.99 0 0 0 0 0 0 0 0 0 0 0 0.01

0.01 0.99 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0.02 0 0.96 0 0 0.01 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0.97 0.03

(a)

MPD
E J

W Hea
ter

MPD
E L

O Hea
ter

MPD
E P

rel
ub

e P
um

p

SS
DG JW

 Hea
ter

SS
DG LO

 Hea
ter

FO
P C

en
trif

ug
e

FO
P F

ee
d P

um
p

CPP
 Pu

mp

Gray
wate

r P
um

p

Balla
st

Pu
mp

Air C
om

pre
sso

r

Air C
on

dit
ion

er

Predicted

MPDE JW Heater

MPDE LO Heater

MPDE Prelube Pump

SSDG JW Heater

SSDG LO Heater

FOP Centrifuge

FOP Feed Pump

CPP Pump

Graywater Pump

Ballast Pump

Air Compressor

Air Conditioner

Ac
tu

al

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0.92 0 0 0 0 0 0.07 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0.05 0 0 0 0.95 0 0 0 0 0

0 0 0 0 0 0.14 0 0.86 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0.11 0 0 0 0.04 0 0.09 0.72 0.04 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

(b)
Fig. 7. Normalized confusion matrices rounded to two decimal points for a) adaptive correlation matching and b) static SVM, both with one month of training
data.

A. Bilge and Ballast Pump

The bilge and ballast pump is used for emptying machinery
space bilges of excess water and for taking on ballast water
for stability purposes [44], [45]. The bilge and ballast pump
electrical signature is highly variable, likely due to air pockets
within the bilge and ballast pumping system. When pumping
bilges and ballast tanks, operators try to get the tanks and
bilges to the lowest level possible. As a result, the pump takes
in a mixture of air and water. After the pump is turned off
and suction is shifted to a new tank, the air remains in the
system, resulting in a prolonged start sequence in which the
pump draws a variable amount of power. Over time, six micro-
clusters are formed in the drift tracking process, as shown in
Fig. 8.

Fig. 9 shows the first five transients of the bilge and ballast
pump, corresponding to the first month of data, showing that
in each of these transients, the pump quickly reaches steady
state. Each of these transients are within the first drift cluster.

1 2 3 4 5
Pss (kW)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Q
ss

 (k
Va

r)

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6

Fig. 8. Drift clusters for the bilge and ballast pump in the Qss versus Pss

feature space.

Also shown in Fig. 9 are five subsequent transients for the
most extreme case, in which the pump draws approximately

11

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (s)

0

10

20

30

40

50
P

(k
W

)
Initial
Subsequent

0
1
2
3
4
5
6

Fig. 9. The first five transients of the bilge and ballast pump compared with
five subsequent transients.

0 25 50 75 100 125 150 175 200
Ballast Pump Sample Index

0.2

0.4

0.6

0.8

1.0

Ba
lla

st
 P

um
p

Cu
m

ul
at

iv
e

Re
ca

ll

Adaptive - One-Shot
Adaptive - Correlation
Adaptive - GRU

Static - DNN
Static - SVM
Static - GRU

Fig. 10. Cumulative recall for six classifiers run on the full dataset for the
bilge and ballast pump.

one-fifth of the power of the initial transients. These transients
are all within the leftmost drift cluster. Because there are no
instances of load drift in the first month of data, it would not
be possible to predict this variable nature of the pump, even if
synthetic data was added to the first month’s training and vali-
dation data. All of the static classifiers have poor performance
on the bilge and ballast pump, due to misclassification of the
bilge and ballast pump as other loads. The large number of
false negatives can be demonstrated by viewing a graph of the
bilge and ballast pump recall over time, as shown in Fig. 10.
The recall value is calculated at every load event for all the
data up to that time index. Although the recall is initially poor
for this load, it improves over time for the adaptive classifiers.

B. Controllable Pitch Propeller Pump

On ships, a controllable pitch propeller system provides the
vessel greater maneuverability and prevents the underloading
of diesel engines while operating at slow speeds [44], [46].
On USCGC SPENCER, the CPP system consists of three
primary hydraulic pumps that provide pressurized hydraulic
oil to the CPP system in order to maintain hydraulic control
pressure at the propeller. The ‘A’ pump is a gear driven
pump that is powered by the propulsion system’s reduction
gear. The pressure and flow provided by the ‘A’ pump is
dependent on propeller shaft speed. The ‘B’ and ‘C’ pumps are
electric hydraulic pumps that supplement the pressure and flow

Fig. 11. CPP pump steady-state real power (Pss) over time plotted with the
operating fluid pressure normalized by temperature.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (s)

0

10

20

30

P
(k

W
)

March 2018
September 2020

Fig. 12. Example of five turn-on transients from March 2018 and five turn-
on transients from September 2020 of the CPP pump, demonstrating the
significant difference in steady-state values.

provided by the gear driven pump. Hydraulic control valves
maintain a constant system operating pressure.

The NILM detected changes in the monitored CPP ‘C’
pump’s steady-state power consumption (Pss), as shown in
Fig. 11 for a four-year period of the SPENCER port-side CPP.
This change in steady-state power correlates with the operating
fluid pressure normalized by temperature, as shown on the
right axis of Fig. 11. The operating pressure and temperature
were obtained from the ship’s logs. In February 2018, after
replacement of the hydraulic control valves, there was a large
increase in both the normalized operating pressure and the
power draw. Then, as the normalized operating pressure slowly
decreased over time, the power draw also decreased. The
change was slow; however, at its worst the difference in real-
power steady state between two different turn-on events is
more than 4 kW. This is significant in comparison to the power
drawn by the load. Fig. 12 shows an example of five transients
in the time domain from March 2018, when the CPP pump was
drawing significantly more than its rated power, compared with
five transients from September 2020, after the CPP pump has
drifted back to its original state. These time periods correspond
to the maximum and minimum recorded normalized operating
pressure, respectively.

As the power of the CPP pump increases, the radii of the

12

5 6 7 8 9 10
Pss (kW)

4.0

4.5

5.0

5.5

6.0

6.5

7.0
Q

ss
 (k

Va
r)

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6

Fig. 13. Drift clusters for the CPP pump in the Qss versus Pss feature space.

0 100 200 300 400 500
CPP Pump Sample Index

0.70

0.75

0.80

0.85

0.90

0.95

1.00

CP
P

Pu
m

p
Cu

m
ul

at
iv

e
Re

ca
ll

Adaptive - One-Shot
Adaptive - Correlation
Adaptive - GRU

Static - DNN
Static - SVM
Static - GRU

Fig. 14. Cumulative recall values for six classifiers run on the full dataset
for the CPP pump.

preliminary and coarse boundaries for this load also increase.
Over time, six micro-clusters are formed in the drift tracking
process, which are shown in Fig. 13. Fig. 14 shows the cumu-
lative recall for the CPP pump to analyze the performance of
both the static and adaptive classifiers over time as the load
drifts, in particular the false negatives of the static classifiers.
As noticed by the large negative slope in the recall, the static
classifiers show a reduction in performance starting at around
the 259th CPP pump sample. This corresponds to February
2018, when the CPP pump showed an increase in power
after replacement of the hydraulic control valves. When the
CPP pump’s electrical characteristics begin to drift back to its
initial state, the performance of the static classifiers begin to
improve. This improvement begins at around the 395th CPP
pump sample (August 2018) for the static classifiers.

In contrast, the adaptive classifiers do not exhibit this trend
of its performance being correlated with the load drift. Poten-
tial errors of the static classifier are revealed by examining the
long-term and short-term drift metrics. As shown in Fig. 15,
the long-term metric increases at around the 259th CPP pump
sample point, the same time that the static classifiers show a
reduction in performance. However, the short-term drift met-
ric remains relatively small, corresponding to small changes
between load events, indicating an incremental concept drift.
Thus, the adaptive framework can still accurately identify and
track the CPP pump. Then, the long-term metric can be used
as an indicator of changing machine behavior.

The behavior of the CPP pump is used to demonstrate the

0 100 200 300 400 500
CPP Pump Sample Index

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Di
st

an
ce

 (k
W

)

Long Term Metric
Short Term Metric

Fig. 15. CPP pump long-term and short-term distance metrics.

0 100 200 300 400 500
CPP Pump Sample Index

0.80

0.85

0.90

0.95

1.00

CP
P

Pu
m

p
Cu

m
ul

at
iv

e
Re

ca
ll

Adaptive - GRU
Forgetting - GRU
Static - GRU

Fig. 16. Cumulative CPP recall for three GRU implementations run on the
full dataset.

proposed framework’s ability to avoid catastrophic forgetting
in the presence of recurring concept drift. For demonstration,
an alternative GRU adaption scenario is tested, such that
the framework was kept identical to before except for the
implementation of the GRU retraining. In this alternative
adaptive implementation, the GRU was retrained after the
formation of every drift cluster, as before, except this time the
memory for each load is the twenty most recent transients.
Thus, over time, the GRU will not have access to the older
data when retraining. This test was run ten times and averaged,
with the recall values labelled “Forgetting” shown in Fig. 16.
Although this alternative adaptive implementation is able to
produce a high recall score until around the 479th sample (July
2019), after this point the performance decreases drastically,
presumably because it has no memory of this previously
known state anymore. For the static GRU classifier, in the plot
labelled “Static,” the score improves when the load drifts back
to the initial state, since this is the state the model was trained
on. Both the adaptive GRU classifier with only recent memory
(“Forgetting”) and the static GRU classifier (“Static”) exhibit
many false negatives. In contrast, the proposed adaptive GRU
implementation, labelled “Adaptive,” has high recall values for
the entire duration, even during recurring drift when the load
drifts back to the initial state.

C. Main Propulsion Diesel Engine Prelube Pump

The main propulsion diesel engine (MPDE) prelube pump
ensures adequate lubricating oil distribution during startup and

13

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (s)

0

5

10

15
P

(k
W

)
March 2018
August 2020

Fig. 17. Example of five turn-on transients from March 2018 and five turn-on
transients from August 2020 of the MPDE prelube pump, demonstrating the
significant difference in steady-state values.

0.5 1.0 1.5 2.0 2.5 3.0
Pss (kW)

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Q
ss

 (k
Va

r)

Cluster 1
Cluster 2
Cluster 3
Cluster 4

Fig. 18. Drift clusters for the MPDE prelube pump in the Qss versus Pss

feature space.

shutdown of the engine. The pump is manually energized prior
to engine startup and operates automatically during engine
shutdown [47]. The MPDE prelube pump steady-state power
showed similar trends to the CPP pump. The control valves of
the MPDE prelube pump were replaced at the same time as for
the CPP pump, and there was subsequently a similar increase
in the power of the MPDE prelube pump in February 2018,
and a similar decrease in power over time afterwards. Fig. 17
shows an example of five transients in the time domain from
March 2018 and five transients from August 2020. Over time,
four micro-clusters are formed in the drift tracking process,
as shown in Fig. 18. As the load drifts away from its initial
state, the MPDE prelube pump is misclassified by the static
classifiers, leading to an increasing number of false negatives.
This is shown in the plot of recall over time in Fig. 19. The
steep decrease in recall at about the 80th MPDE prelube sample
correlates exactly to February 2018. Meanwhile, the adaptive
classifiers all show almost perfect performance. The short-term
and long-term drift metrics are shown in Fig. 20, showing an
increase in long-term metric also at the 80th sample point.
The short-term metric briefly increases at the time, but quickly
returns to a relatively small distance.

D. Fuel Oil Purifier

A shipboard fuel oil purifier (FOP) presents an example
of a sudden change in operating condition. The FOP is run
frequently while underway to clean the diesel oil before use

0 50 100 150 200
MPDE Prelube Pump Sample Index

0.70

0.75

0.80

0.85

0.90

0.95

1.00

M
PD

E
Pr

el
ub

e
Pu

m
p

Cu
m

ul
at

iv
e

Re
ca

ll

Adaptive - One-Shot
Adaptive - Correlation
Adaptive - GRU

Static - DNN
Static - SVM
Static - GRU

Fig. 19. Cumulative recall values for six classifiers run on the full dataset
for the MPDE prelube pump.

0 50 100 150 200
MPDE Prelube Pump Sample Index

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Di
st

an
ce

 (k
W

)

Long Term Metric
Short Term Metric

Fig. 20. MPDE prelube pump long-term and short-term distance metrics.

in the MPDEs or SSDGs. The FOP consists of a feed pump,
which draws fuel from various storage tanks around the ship
and a motor-driven centrifugal separator system [44], [48].
Observations showed two distinct operating conditions for the
FOP centrifugal motor, a cold-start and a warm-start. Under
normal operating conditions, the feed pump will energize,
followed shortly by the centrifugal motor. The centrifugal
motor energizes in the cold-start condition; that is, the motor
is starting up after being off for a sufficiently long period.
Large current is needed to begin rotation of the motor shaft.
Often, while the feed pump is still energized, the centrifugal
motor cycles. This means the centrifugal motor turns off, then
re-energizes shortly after in a warm-start condition, often only
a few seconds after turning off. It is likely that the motor shaft
is still spinning, so the inrush current is significantly smaller.
This faulty scenario puts unnecessary wear on the centrifugal
motor, as these warm-starts do not have any function for
the system. Example cold-start and warm-start transients are
shown in Fig. 21.

Fig. 22 shows the recall and precision scores for the FOP
centrifugal motor. The decreasing recall for the one-shot adap-
tive classifier is because the warm-start events were deemed
unclassifiable. The first instance of the FOP centrifugal motor
was in the cold-start condition. The warm-start condition acts
as a sudden concept drift. Although the warm-start instances
lead to an increase in false negatives for the FOP centrifugal
motor, it is significant that they did not become false positives
for another load. By identifying the instances as unclassifiable,

14

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (s)

0

20

40

60

80
P

(k
W

)
Cold-start
Warm-start

Fig. 21. Five examples each of the cold-start and warm-start turn-on transients
of the fuel oil purifier centrifugal motor.

0 200 400 600 800 1000
FOP Centrifuge Sample Index

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

FO
P

Ce
nt

rif
ug

e
Cu

m
ul

at
iv

e
Re

ca
ll

Adaptive - One-Shot
Adaptive - Correlation
Adaptive - GRU

Static - DNN
Static - SVM
Static - GRU

(a)

0 200 400 600 800 1000
FOP Centrifuge Sample Index

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

FO
P

Ce
nt

rif
ug

e
Cu

m
ul

at
iv

e
Pr

ec
isi

on

Adaptive - One-Shot
Adaptive - Correlation
Adaptive - GRU

Static - DNN
Static - SVM
Static - GRU

(b)
Fig. 22. Cumulative a) recall and b) precision values for six classifiers run
on the full dataset for the fuel oil purifier centrifugal motor.

an operator could then identify the unclassified events as the
centrifugal motor operating in a faulty warm-start condition.
For the adaptive correlation matching which started with
one month of data, because there was an example of the
warm-start condition in the training data, the classifier was
able to correctly identify both the cold-start and warm-start
conditions.

Unlike the adaptive framework, which is robust to outlier
load events, the static classifiers will label every incoming load
event. This means every false negative of one load results in a
false positive in another load. This is illustrated by examining
the precision score over time of the FOP centrifugal motor.
The steep decrease in precision starting at about the 408th FOP

centrifugal motor sample is in February 2018. As expected,
this is exactly when the CPP pump recall starts to decrease,
because the CPP pump is being misclassified as the FOP
centrifugal motor. The precision begins to improve at around
the 630th FOP centrifugal motor sample (August 2018), the
same time that the CPP pump recall begins to improve.

VII. CONCLUSION

The results of running the framework on a collection of
shipboard loads demonstrate the ability of the framework to
accurately detect loads even as they drift in the feature space
over time. Because the classifiers are physically informed, they
are effective in both one-shot and few-shot scenarios, while
allowing for adaptation as data is collected in real time. For
loads with time-dependent changes in steady state, the drift
metrics present an indicator of possible load degradation. This
information can be utilized by a watchstander as a condition-
based maintenance aid, so equipment and systems can be
repaired or replaced before complete failure occurs. Using the
proposed semi-supervised framework, a dataset that includes
variable load behavior can be built that will make supervised
training more effective.

ACKNOWLEDGMENT

The authors gratefully acknowledge the U.S. Coast Guard
and in particular the crew of USCGC SPENCER for granting
access to their ship. This work was supported by the Office
of Naval Research NEPTUNE program and The Grainger
Foundation.

REFERENCES

[1] B. Zhang, Y. Guo, Y. Li, Y. He, H. Wang, and Q. Dai, “Memory recall:
A simple neural network training framework against catastrophic for-
getting,” IEEE Transactions on Neural Networks and Learning Systems,
pp. 1–13, 2021.

[2] S. Liu, S. Xue, J. Wu, C. Zhou, J. Yang, Z. Li, and J. Cao, “Online
active learning for drifting data streams,” IEEE Transactions on Neural
Networks and Learning Systems, pp. 1–15, 2021.

[3] M. Delange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis,
G. Slabaugh, and T. Tuytelaars, “A continual learning survey: Defying
forgetting in classification tasks,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, pp. 1–1, 2021.

[4] B. Celik and J. Vanschoren, “Adaptation strategies for automated ma-
chine learning on evolving data,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 43, no. 9, pp. 3067–3078, 2021.

[5] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang, “Learning under
concept drift: A review,” IEEE Transactions on Knowledge and Data
Engineering, vol. 31, no. 12, pp. 2346–2363, 2019.

[6] J. Paris, J. S. Donnal, and S. B. Leeb, “NilmDB: The non-intrusive load
monitor database,” IEEE Trans. Smart Grid, vol. 5, no. 5, pp. 2459–
2467, 2014.

[7] M. Kaselimi, N. Doulamis, A. Voulodimos, E. Protopapadakis, and
A. Doulamis, “Context aware energy disaggregation using adaptive
bidirectional LSTM models,” IEEE Transactions on Smart Grid, vol. 11,
no. 4, pp. 3054–3067, 2020.

[8] J. Z. Kolter and M. J. Johnson, “REDD: A public data set for energy
disaggregation research,” in Proceedings of the SustKDD workshop on
Data Mining Applications in Sustainability, 2011, pp. 1–6.

[9] K. Anderson, A. Ocneanu, D. Benitez, D. Carlson, A. Rowe, and
M. Berges, “Blued: A fully labeled public dataset for event-based
nonintrusive load monitoring research,” in Proceedings of the 2nd KDD
Workshop on Data Mining Applications in Sustainability, 2012, pp. 12–
16.

[10] J. Kelly and W. Knottenbelt, “The UK-DALE dataset, domestic
appliance-level electricity demand and whole-house demand from five
UK homes,” Scientific Data, vol. 2, no. 150007, pp. 1–14, 2015.

15

[11] Y. Wang, L. Zhang, Y. Yao, and Y. Fu, “How to trust unlabeled data
instance credibility inference for few-shot learning,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, pp. 1–1, 2021.

[12] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object
categories,” IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 28, no. 4, pp. 594–611, 2006.

[13] X. Pu and C. Li, “Online semisupervised broad learning system for
industrial fault diagnosis,” IEEE Transactions on Industrial Informatics,
vol. 17, no. 10, pp. 6644–6654, 2021.

[14] R. N. Gemaque, A. F. J. Costa, R. Giusti, and E. Santos, “An overview of
unsupervised drift detection methods,” Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, vol. 10, pp. 1–18, 2020.

[15] H. M. Gomes, J. Read, A. Bifet, J. P. Barddal, and J. a. Gama,
“Machine learning for streaming data: State of the art, challenges, and
opportunities,” SIGKDD Explor. Newsl., vol. 21, no. 2, p. 6–22, Nov.
2019.

[16] G. Fenza, M. Gallo, and V. Loia, “Drift-aware methodology for anomaly
detection in smart grid,” IEEE Access, vol. 7, pp. 9645–9657, 2019.

[17] H. Hu, M. Kantardzic, and T. S. Sethi, “No free lunch theorem for
concept drift detection in streaming data classification: A review,” WIREs
Data Mining and Knowledge Discovery, vol. 10, no. 2, pp. 1–25, 2020.

[18] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with drift
detection,” in Brazilian symposium on artificial intelligence. Springer,
2004, pp. 286–295.

[19] M. Baena-Garcıa, J. del Campo-Ávila, R. Fidalgo, A. Bifet, R. Gavalda,
and R. Morales-Bueno, “Early drift detection method,” in Fourth inter-
national workshop on knowledge discovery from data streams, vol. 6,
2006, pp. 77–86.

[20] S. Wang, L. L. Minku, and X. Yao, “A systematic study of online class
imbalance learning with concept drift,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 29, no. 10, pp. 4802–4821, 2018.

[21] A. Haque, L. Khan, and M. Baron, “Sand: Semi-supervised adaptive
novel class detection and classification over data stream,” in Proceed-
ings of the Thirtieth AAAI Conference on Artificial Intelligence, ser.
AAAI’16. AAAI Press, 2016, p. 1652–1658.

[22] F. A. Pinage, E. M. dos Santos, and J. Gama, “A drift detection method
based on dynamic classifier selection,” Data Mining and Knowledge
Discovery, vol. 34, pp. 50–74, 2019.

[23] K. B. Dyer, R. Capo, and R. Polikar, “Compose: A semisupervised
learning framework for initially labeled nonstationary streaming data,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 25,
no. 1, pp. 12–26, 2014.

[24] R. Capo, A. Sanchez, and R. Polikar, “Core support extraction for learn-
ing from initially labeled nonstationary environments using compose,”
in 2014 International Joint Conference on Neural Networks (IJCNN),
2014, pp. 602–608.

[25] M. Umer, C. Frederickson, and R. Polikar, “Learning under extreme
verification latency quickly: Fast compose,” in 2016 IEEE Symposium
Series on Computational Intelligence (SSCI), 2016, pp. 1–8.

[26] R. Razavi-Far, E. Hallaji, M. Saif, and G. Ditzler, “A novelty detector
and extreme verification latency model for nonstationary environments,”
IEEE Transactions on Industrial Electronics, vol. 66, no. 1, pp. 561–570,
2019.

[27] J. Paris, J. S. Donnal, Z. Remscrim, S. B. Leeb, and S. R. Shaw, “The
sinefit spectral envelope preprocessor,” IEEE Sensors Journal, vol. 14,
no. 12, pp. 4385–4394, 2014.

[28] E. K. Saathoff, D. H. Green, R. A. Agustin, J. W. O’Connell, and S. B.
Leeb, “Inrush current measurement for transient space characterization
and fault detection,” IEEE Transactions on Instrumentation and Mea-
surement, vol. 70, pp. 1–10, 2021.

[29] A. Jain, R. Duin, and J. Mao, “Statistical pattern recognition: a re-
view,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 22, no. 1, pp. 4–37, 2000.

[30] B. Wang, W. Shi, and Z. Miao, “Confidence analysis of standard
deviational ellipse and its extension into higher dimensional Euclidean
space,” PLOS ONE, vol. 10, no. 3, pp. 1–17, 03 2015.

[31] J. M. Shapiro, G. B. Lamont, and G. L. Peterson, “An evolutionary
algorithm to generate hyper-ellipsoid detectors for negative selection,” in
Proceedings of the 7th Annual Conference on Genetic and Evolutionary
Computation, ser. GECCO ’05. New York, NY, USA: Association for
Computing Machinery, 2005, p. 337–344.

[32] I. T. Jolliffe, Principal Component Analysis and Factor Analysis. New
York, NY: Springer New York, 1986, pp. 115–128.

[33] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” in NIPS 2014
Workshop on Deep Learning, 2014, pp. 1–9.

[34] J. Peng, B. Tang, H. Jiang, Z. Li, Y. Lei, T. Lin, and H. Li, “Overcoming
long-term catastrophic forgetting through adversarial neural pruning and
synaptic consolidation,” IEEE Transactions on Neural Networks and
Learning Systems, pp. 1–14, 2021.

[35] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “icarl: In-
cremental classifier and representation learning,” 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 5533–5542,
2017.

[36] H. Zhao, H. Wang, Y. Fu, F. Wu, and X. Li, “Memory efficient class-
incremental learning for image classification,” IEEE Transactions on
Neural Networks and Learning Systems, pp. 1–12, 2021.

[37] J. Kirkpatrick, R. Pascanu, N. C. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska,
D. Hassabis, C. Clopath, D. Kumaran, and R. Hadsell, “Overcoming
catastrophic forgetting in neural networks,” Proc. Nat. Acad. Sci. USA,
vol. 144, no. 13, pp. 3521–3526, 2017.

[38] A. Mallya and S. Lazebnik, “Packnet: Adding multiple tasks to a
single network by iterative pruning,” in 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2018, pp. 7765–7773.

[39] R. A. Agustin, “A load identification and diagnostic framework for
aggregate power monitoring,” Master’s thesis, Massachusetts Institute
of Technology, Feb 2021.

[40] R. Hyde, P. Angelov, and A. MacKenzie, “Fully online clustering
of evolving data streams into arbitrarily shaped clusters,” Information
Sciences, vol. 382-383, pp. 96 – 114, 2017.

[41] M. Tareq, E. A. Sundararajan, M. Mohd, and N. S. Sani, “Online
clustering of evolving data streams using a density grid-based method,”
IEEE Access, vol. 8, pp. 166 472–166 490, 2020.

[42] Y.-F. Li and Z.-H. Zhou, “Towards making unlabeled data never
hurt,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 37, no. 1, pp. 175–188, 2015.

[43] S. Makonin and F. Popowich, “Nonintrusive Load Monitoring Perfor-
mance Evaluation,” Energy Efficiency, vol. 8, pp. 809–814, 12 2014.

[44] T. J. Kane, “The NILM Dashboard: Shipboard automatic watchstanding
and real-time fault detection using non-intrusive load monitoring,”
Master’s thesis, Massachusetts Institute of Technology, June 2019.

[45] Technical Drawing 905-WMEC-529-1-1-K: Ballasting and Emergency
Bilge Drainage System Diagram, accessed: 2021.

[46] Technical Manual 2817-245-A: Controllable Pitch Propeller System,
accessed: 2021.

[47] Technical Manual 4647-233-A: Main Diesel Engine, accessed: 2021.
[48] Technical Manual 4921-261-A: Fuel Oil Purifier, accessed: 2021.

Daisy H. Green received the B.S. degree in elec-
trical engineering from the University of Hawai‘i at
Mānoa, Honolulu, HI, USA, in 2015, and the M.S.
degree and the Ph.D. degree in electrical engineering
and computer science from the Massachusetts Insti-
tute of Technology, Cambridge, MA, USA, in 2018
and 2022, respectively. Her research interests include
the development of signal processing algorithms for
energy management and condition monitoring.

Aaron W. Langham received the B.E.E. degree
in electrical engineering from Auburn University,
Auburn, AL, USA in 2018, and the M.S. degree in
electrical engineering and computer science from the
Massachusetts Institute of Technology, Cambridge,
MA, USA in 2022. He is currently pursuing the
Ph.D. degree in electrical engineering and computer
science at the Massachusetts Institute of Technology,
Cambridge, MA, USA. His research interests include
signal processing, machine learning, and computer
systems for energy management.

16

Rebecca A. Agustin received the B.S. and M.Eng.
degrees in electrical engineering and computer sci-
ence from the Massachusetts Institute of Technology,
Cambridge, MA, USA, in 2019 and 2021, respec-
tively.

Devin W. Quinn received the M.S. degree in me-
chanical engineering from the Massachusetts Insti-
tute of Technology in 2022. He was previously sta-
tioned as a Damage Control Officer aboard USCGC
DILIGENCE and Engineer Officer onboard USCGC
ESCANABA. He is currently a Lieutenant Comman-
der with the United States Coast Guard, stationed in
California.

Steven B. Leeb received the Ph.D. degree from
the Massachusetts Institute of Technology, in 1993.
Since 1993, he has been a member on the MIT
Faculty with the Department of Electrical Engineer-
ing and Computer Science. He also holds a joint
appointment with the Department of Mechanical
Engineering, MIT. He is concerned with the devel-
opment of signal processing algorithms for energy
and real-time control applications.

