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Abstract—Sensing solutions provide a rich feature set for
electromechanical load monitoring and diagnostics. For example,
qualities that describe the operation of an electromechanical
load can include measurements of power, torque, vibration,
electrical current demand, and electrical harmonic content. If
properly interpreted, these measurements can be utilized for
energy management, condition-based maintenance, and fault
detection and diagnostics. When monitoring several loads from
an aggregate data stream, a well posed feature space will permit
not only load identification, but also the characterization of faults
and gradual changes in the health of an individual machine.
Many feature selection methods assume static and generalizable
data, without consideration of concept drift and evolving behavior
over time. This paper presents a method for evaluating load
separability in a feature space prior to the application of a pattern
classifier, while accounting for changing operating conditions and
load variability. A four-year load dataset is used to validate the
method.

NOMENCLATURE
CPP Controllable pitch propeller.
FOP Fuel oil purifier.
MPDE Main propulsion diesel engine.
NILM Nonintrusive load monitor.
PQ,S Real, reactive, and apparent powers.
P, Qss Real and reactive steady-state powers.
SSDG Ship service diesel generator.

I. INTRODUCTION

Increasingly abundant sensing technologies for electrome-
chanical loads provide access to measurements of power,
torque, vibration, electrical current demand, and electrical
harmonic content [1], [2]. These measurements provide an
abundant feature set for electromechanical load monitoring
and diagnostics. Condition-based maintenance (i.e., mainte-
nance performed as necessary to maintain load availability
and performance), requires the identification of the gradual
degradation of equipment performance, or “soft faults” [3].
Efficiently scheduled service prevents “hard faults” that cause
complete equipment failures. For convenience and lower costs,
sensors are often installed at a centralized location. As a
result, individual loads need to be disaggregated from the
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aggregate stream. However, the challenge in applying pattern
classifiers to load datasets is ensuring correct results even in
fault scenarios or as operating conditions change. That is, the
applicability and utility of pattern classifiers for fault detection
and diagnostics relies on having a well-chosen or “informed”
feature space with predictable characteristics for recognizing
observations that arise outside of initial training data.

One subset of features provided by electromechanical loads
can be obtained using a nonintrusive load monitor (NILM). A
typical NILM scenario involves monitoring the power service
to a collection of loads, e.g. from the main feeder to an
electrical service panel or from the output of a source or
generator [4]. A great deal of nonintrusive load monitoring
research assumes training data is forever representative of new
data, without regard to changing operating conditions or faulty
behavior [5]. Unfortunately, real data is not static [6]. Load
behavior may evolve over time, referred to in many domains
as concept drift [7]-[9]. Open-access datasets for nonintrusive
load monitoring are generally restricted to healthy residential
appliances [10], [11]. These datasets cannot generalize to
the raft of loads and different operating conditions and fault
conditions possible in residential, industrial, and commercial
sites. As a result, the training data for a practical nonintrusive
load monitoring classifier likely needs to be collected from
the specific system of interest over a short period of time.
Such a limited training dataset may not fully characterize the
long-term distributions of loads in a given feature space. The
accuracy of any classifier depends on the separability of the
data. In this context, a separable feature space is one that
permits classification of load events even with future load vari-
ability and drift. In evaluating feature spaces for separability,
the question becomes: is the data uniquely recognizable, and
are there, or will there be, unresolvable overlaps in the feature
space now or as equipment ages and operating conditions
change?

Several methods exist to evaluate feature importance in a
given feature space. Neighborhood component analysis and
minimum redundancy maximum relevance have been used
in the context of nonintrusive load monitoring, due to their
physical interpretability [12], [13]. Other methods such as
random forest variable importance analysis, recursive feature
elimination, and Boruta [14] are effective in ranking feature
importance. Techniques for evaluating class separability based
on distance measures include interclass distance, intraclass
distance, the Fisher ratio, and scatter matrices [15], [16]. How-
ever, these methods do not take into account the possibility that
a load’s behavior in the feature space will adapt over time.
Automated diagnostics in rotating machines, specifically for



bearing faults in different operating environments is detailed
in [17]-[19], using transfer learning and domain generalization
techniques. However, these papers only consider a single
machine, and do not perform disaggregation of multiple loads.

This work’s contribution is a method to address the problem
of feature space evaluation in a multi-load environment in
the presence of physics-related concept drift. The drift is
assumed to be gradual, due to either normal operation or
load degradation. To do so, this work provides a check for
electromechanical load separability to inform the decision of
adding features to the feature space. The separability check
seeks to determine if a classifier trained on a dataset limited
in time will be reliable in the future. The separability check
does not assume that the data is independent and identically
distributed (i.i.d.) or that classes are balanced. The separability
check is independent of the type of classifier used, and does
not prescribe any particular classification methodology. Using
every feature available can increase data separability, but can
result in overly fit, non-generalizable decision boundaries due
to the sparsity of training data [20]. In addition, adding extra
features may incur extra costs if they require additional sensors
or signal processing development. Thus, it is desirable to start
with a compact set of features and only add features when
necessary.

The proposed separability check is based on geometric
overlap using hyperellipsoidal regions. An initial feature space
is selected based on known electromechanical load behaviors.
This feature space is then assessed by applying the load
separability check to a limited set of labeled data, which
defines regions of load behavior within the feature space. The
presence of overlapping regions indicates current or future
regions of uncertainty for a potential NILM classifier. As more
labeled data is obtained, this check can be periodically run
to re-evaluate the feature space for potential conflicts. The
proposed load separability check is demonstrated with a four-
year dataset of loads collected from a US Coast Guard (USCG)
vessel.

This paper is organized as follows: Section II gives a
review of the variability and drift that exists in load operation.
Section III introduces a method to check for load separability
in a given feature space. Section IV shows a demonstration of
these methods with four years of shipboard electromechanical
data.

II. LOAD VARIABILITY

There exists an abundance of physical features that reveal
information about load behavior and are valuable for load iden-
tification. Commonly used features include the fundamental
real power (P) and reactive power ((Q) changes in steady-state
and inrush characteristics, such as peak, duration, and shape
[2], [4]. P and @ are computed using the Sinefit algorithm
[21] by computing the short-term average of the fundamental
in-phase and quadrature components of the sampled current
over every ac line cycle and assuming a stiff sinusoidal system
voltage. For instance, Fig. 1 and Fig. 2 show two examples
of measured current and the computed real and reactive
power streams from data collected by a NILM installed on
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Fig. 1: Phase-a current and real and reactive powers for a turn-
on transient of a controllable pitch propeller pump.
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Fig. 2: Phase-a current and real and reactive powers for a turn-
on transient of a ship service diesel generator jacket water
heater.

a shipboard subpanel. In Fig. 1, a controllable pitch propeller
(CPP) pump inrush transient occurs at 0.5s. In Fig. 2, a ship
service diesel generator (SSDG) jacket water heater turns on
at 0.5, on top of a base load. From the P and @) streams, an
event detector extracts inrush and steady-state features for each
detected load event. The physical task of some loads may also
create higher order current harmonics. For example, power
electronics, such as rectifiers without power factor correction,
may contribute higher order harmonics at multiples of the line
frequency [22]. Direct voltage and current measurements can
also serve as additional streams of data for extracting relevant
features [23]. Most nonintrusive load monitoring research
assumes that these physical features will not change over
time. In practice, these features will change with changing
operating conditions, machinery aging and wear, or abnormal
load behavior. In addition, imbalanced three-phase loads can
result from faulty operation, but are outside of the scope of



this work.

The identification of loads, even in drifting states, is neces-
sary for fault detection and diagnostics using nonintrusive load
monitoring. Little work has been done on the use of nonintru-
sive load monitoring for fault detection and diagnostics. Ex-
isting research that does consider fault detection mostly deals
with load timing faults, such as short-cycling or elongated
duty cycle, rather than changing electrical characteristics,
such as real and reactive power and higher-harmonic current
consumption [24], [25]. Changing electrical characteristics can
complicate load identification, but are also useful diagnostic
indicators. In addition, drifting load operation can take months
or years to manifest in electrical data. This can complicate
long-term load disaggregation when using a static classifier.
This work demonstrates new feature space evaluation tech-
niques using a four-year dataset collected during our field
studies onboard a US Coast Guard vessel. The electrical
loads represented in this dataset include three-phase loads
with approximately linear models at their operating points,
including resistive heaters and induction motors.

Since many classification techniques are not readily inter-
pretable, their classification decision is unclear and potentially
inaccurate as more data is collected. This is compounded
when the underlying distribution of new data is different
than the distribution of the training data, known as concept
drift. A load may drift to an entirely different region of the
feature space than the classifier expected, and may become
non-separable from other loads. It is difficult to determine
the optimal separator for future data because there are likely
many large-margin, low-density separators that can accurately
classify the training dataset [26]. That is, concept drift can
cause performance degradation regardless of classifier choice.
With physically informed assumptions made on the character
of the concept drift, the feature space should be assessed to
find the most meaningful set of electrical characteristics that
provide adequate separability between classes. The scope of
this work assumes the drift in electrical behavior is gradual,
analogous to incremental concept drift [9].

When there is unpredictable concept drift in an uninter-
pretable feature space, little can be done to characterize this
unknown drift. For example, if a class drifts inconsistently
in either shape or direction, it will be difficult to provide a
geometric characterization that can strike a balance between
being too loose and too compact. If a feature space is phys-
ically informed, the drift can be interpreted in terms of the
load’s operation.

Domain knowledge about how loads drift in a physically
informed feature space is necessary to guide the characteriza-
tion of this drift for separability testing. Two shipboard loads
are presented as examples for characterizing load behavior,
a fuel oil purifier (FOP) centrifugal motor and a controllable
pitch propeller (CPP) pump. For illustrative purposes, consider
steady-state real power (P,) and steady-state reactive power
(Qss), where the steady-state power was extracted from load
on-events, calculated for 0.5 seconds after each event. In a
Qss versus P, feature space, the drift is likely to occur along
a single major axis. Fig. 3 shows the normalized histograms
of the FOP centrifugal motor’s Pss for five different periods
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Fig. 3: Normalized histograms of the FOP centrifugal motor’s
steady-state real power (Pss) for two cruises at a time. Gaus-
sians are fitted with labeled means and standard deviations.

in time. The data is divided into “cruises,” where each cruise
represents a period of one to three months in which the vessel
is mostly underway at-sea. There is a break in data collection
during the vessel’s in-port periods after each cruise. Each
plot shows two cruises of data, e.g., the first row is the first
and second cruise, the second row is the third and fourth
cruise, and so on. A Gaussian probability density function
was fit to each dataset with the mean (denoted as u) and
standard deviation (denoted as o) from the data, as shown
in the labels on the plots. The mean of the FOP centrifugal
motor’s steady-state real power increases as time progresses.
Although this example shows only one dimension having a
Gaussian distribution, a similar trend can be seen in the steady-
state reactive power. In Fig. 4, the Gaussian-like distribution
of Pss and Q45 over the entire dataset of ten cruises can be
observed for the FOP centrifugal motor. The increase in power
can likely be attributed to load aging and wear.

A plot of normalized histograms over five periods in time
for the CPP pump is shown in Fig. 5. These are the same
time periods as for the FOP centrifugal motor histograms in
Fig. 3. It can be observed that unlike the FOP centrifugal
motor for which P, generally trends in one direction over
time, the CPP pump’s power first drifts higher before drifting
back to a similar power level as its original state. Intuition
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Fig. 4: Q4 versus Pg for the FOP centrifugal motor after ten
cruises of data plotted with the normalized probability density
for each axis.

| Cruise 1/and 2 U:6.44
0:0.55
1.
2 -
Cruise 3/ and 4 u:7.35
0:0.91
1.
2 i I -
;:z oL I | =l rT| 'mﬂlﬂ'ﬂl
2 ?Tcruise5and 6 ©:9.0
2 0:0.54
g 1
a
>
.": -
S 0-r T T
©
Qo 2 -
o Cruise 7 and 8 p:8.12
o 0:0.39
1.
/7
N
0 e .
2 -
Cruise 9/ and 10 U:6.39
0:0.79
04 ] / .I'_L‘."‘ — :
5 6 7 8 9 10

Pss (kW)

Fig. 5: Normalized histograms of the CPP pump’s steady-state
real power (Ps) for two cruises at a time. Gaussians are fitted
with labeled means and standard deviations.

for the drift of the CPP pump is provided by examining the
change in operating condition. The monitored pump is part of
the CPP system, which is operated underway to provide the
vessel greater maneuverability. The CPP pump is an electric
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Fig. 6: Normalized histograms of P, for the FOP centrifugal
motor at various points in time.

hydraulic pump, supplementing a separate gear driven pump
to provide pressurized hydraulic oil to the CPP system and
maintain hydraulic control pressure at the propeller. The drift
in the pump’s steady-state real power and reactive power
consumption over the monitored four-year period correlates
with the operating fluid pressure normalized by temperature,
as obtained from the ship’s logs. There was a large increase in
both the power draw and the normalized operating pressure in
February 2018, after the replacement of the hydraulic control
valves. Then, as the normalized operating pressure decreased
over time, the power draw also subsequently decreased.

These two examples demonstrate that with a limited dataset
in time it is difficult to determine how much of the load’s total
distribution is accounted for. Accordingly, the NILM feature
selection process should take all known data into account
when evaluating the suitability of a feature space. For instance,
Fig. 6 and Fig. 7 show the normalized histograms for the FOP
centrifugal motor and CPP pump, respectively, after various
numbers of cruises (e.g., 1 cruise contains the first cruise of
data and 10 cruises contains all 10 cruises of data). For the
FOP centrifugal motor, the variance generally increases as the
number of cruises increases, due to the load drift. As operating
conditions change or faults occur and are fixed, a load can
return to a previously observed region in the feature space. For
the CPP pump, the variance increases through the fifth cruise
due to load drift, after which it slightly decreases as the load
drifts back to its original state. Although not all loads appear
perfectly Gaussian, a Gaussian approximation still can provide
a sufficient characterization while being easy to compute and
describe. With this assumption of load characterization, the
following section presents the hyperellipsoid characterization
for checking load separability.

ITII. FEATURE SPACE EVALUATION

The existence of concept drift in load behavior leads to the
question: how can feature spaces be evaluated for their ability
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Fig. 7: Normalized histograms of P4 for the CPP pump at
various points in time.

to provide separability as loads undergo faults or changing
operating conditions? With an understanding of load behavior
based on prior observations and knowledge of specific oper-
ating patterns, a preliminary set of features can be selected.
However, prior to selecting and training a classifier and
establishing a diagnostic process within this feature space, the
selected features should be evaluated. Even if data is linearly
separable, the proposed separability check will identify loads
that may become ambiguous in the future if drift occurs.
This can inform feature space modification. The separability
check is given as an overlap test of geometric characterization
regions for each load. An ideal characterization region must
be able to represent trends in the load data and anticipated
drift, but still be physically reasonable and fairly compact to
the region occupied by the load events. Finally, there must be
a well-defined and computationally tractable test for overlap
between two characterization regions. For illustrative purposes
in this section, this method is shown with two-dimensional
feature spaces of steady-state real power (Pss) and steady-
state reactive power (Qss). However, this method can be used
to assess feature spaces of arbitrary dimension [27].

The features presented in the examples in this section use
units of power. However, for features that do not have common
units, it is necessary to apply some form of feature scaling
such as standardization or normalization [28]. When using
the separability check, it is imperative that the dataset in
consideration be correctly labeled, such that even points that
appear to be outliers can be assumed to represent actual load
behavior and not incorrect labeling.

A. Separability Check

For loads that do not drift in the feature space, such as
a heater, their distributions in the feature space typically
can be characterized as multivariate Gaussians with constant
mean and variance. The probability density function (PDF) of

Load 1 Data Fit Hyperellipsoid Separable
» \
Overlap %
Test
Load 2 Data Fit Hyperellipsoid / Non-separable
—

 a

Fig. 8: Diagram illustrating load separability check.

a multivariate Gaussian distribution with an N-dimensional
random vector X, is given as:

fX($1,~~~7$N) =

1 1 T w1 (D
o (W e
where X' is the covariance matrix of X, | X| is the determinant
of the covariance matrix, and g is the N-dimensional mean
vector of X [29]. The covariance matrix and mean can be
approximated with the covariance and mean calculated from
collected data. When a load exhibits drift, it often resembles
a multivariate Gaussian distribution with non-constant mean
and covariance. That is, for some subset of data in time,
the data can be approximated as Gaussian. However, over
time the distribution may change. With this assumption, the
load separability check is performed by first fitting an N-
dimensional hyperellipsoid to each load’s data. N-dimensional
hyperellipsoids are able to represent variance in several orthog-
onal axes and are the equiprobability contours of a multivariate
Gaussian distribution. A hyperellipsoid region of arbitrary
dimension can be represented by:

(x —m)TE(x-m)<1 (2)

where m is an N x 1 vector representing the centroid of
the hyperellipsoid and FE is a real symmetric positive-definite
N x N matrix representing the shape and orientation of the
hyperellipsoid. Any point , that satisfies the inequality in Eq.
(2) is either inside or on the surface of the hyperellipsoid [30].

Principal component analysis (PCA) is used to generate the
hyperellipsoid regions. Although other techniques for fitting
hyperellipsoids exist, PCA is used here since the new set
of axes and variances can be understood as fitting an N-
variate Gaussian distribution to the data. PCA expresses the
most variance in the data possible in each generated principal
component axis [31]. The variance (denoted as o2) of the
data in each of the principal component axes is computed.
The standard deviation (denoted as o) of the data in each
principal component axis is obtained by taking the positive
square root of these variances. PCA can be computed using
eigendecomposition of the covariance matrix or with singular
value decomposition [31]. A component matrix is yielded
with rows equal to the principal component axes, which
can be used as a “transformation matrix” from the feature
axes to the principal component axes. The N-dimensional
hyperellipsoid’s radii are obtained by multiplying the principal



component standard deviations, sorted in descending order, by
a user-defined parameter, o. The choice of « is described
below. The hyperellipsoid’s centroid is obtained by taking
the mean of the data points in the feature space. Finally, the
hyperellipsoid’s rotation is represented using the transforma-
tion matrix obtained from PCA. Hyperellipsoidal regions are
created in this way for each load in a chosen feature space. The
physics of load drift is embedded in these regions in the size
and rotation of the hyperellipsoids, obtained using PCA. These
regions are then subjected to a test for overlap, as will be later
described. Overlapping regions indicate that a feature space
that will not be robust at separating the given loads, given
load drift. Fig. 8 summarizes the separability check process.

One strategy for choosing the hyperellipsoid size involves
taking a constant number of standard deviations in each
principal component direction. For example, three standard
deviations will cover 99.7% of all hypothetical data, assum-
ing a normal distribution. A disadvantage of this approach,
however, is that it is not responsive to the number of load
events obtained. Instead, the number of standard deviations
for each hyperellipsoid, denoted as «, should be selected
based on the amount of confidence in the underlying class
distribution. As the number of load events M for a class
increases, the confidence that the data is representative of the
underlying distribution also generally increases. There is more
uncertainty in potential load drift for smaller M. By adjusting
« based on class size, this method is able to handle class
sizes that are different between loads. Classes that do not have
many load events have more uncertainly in their underlying
distribution and as a result are assigned a looser hyperellipsoid.
The proposed method for selecting o adds an exponentially
decaying term to shrink the region size as more load events
are collected:

a=3(1+e M), 3)

where K is a tunable parameter. For any choice of K, the
number of standard deviations «, is bounded between three
and six. When M is zero, then « is six. When M approaches
infinity, the exponential term goes to zero and « approaches
three. When « is close to three there is high confidence that
the load has been well-characterized and will no longer drift
in the feature space.

By adjusting the parameter K, the rate at which the expo-
nential decays can be adjusted. As K increases, the rate of
decay of the exponential decreases, and « will converge to
three slower. One consideration for the choice of K is the
availability of extra features. If there are abundant features
that can be added to the feature space, a larger hyperellipsoid
(and thus larger K) can be used in order to give a greater
chance of detecting problematic drift. There will also be a
greater chance of overlapping regions of non-drifting loads.
If additional features are easily obtained, these overlaps can
be resolved by adding them to the feature space. However, if
additional useful features are not available or are expensive
to obtain, overlap detection from non-drifting loads should
be avoided in order to avoid unnecessarily adding features.
Thus, smaller hyperellipsoids (and thus smaller K) should be
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Fig. 9: Hyperellipsoids in the QQss versus P, feature space
for the FOP centrifugal motor at various points in time.
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Fig. 10: Hyperellipsoids in the Q55 versus P, feature space
for the CPP pump at various points in time.

used. With smaller hyperellipsoids, problematic drift will be
detected later than with larger hyperellipsoids.

The two presented shipboard loads from Section II are
used as an example. Using K = 500 in the Q)55 versus Ps,
feature space, the fuel oil purifier (FOP) centrifugal motor
and controllable pitch propeller (CPP) pump data points and
hyperellipsoids are shown in Fig. 9 and Fig. 10, respectively.
The hyperellipsoids are drawn after various number of cruises
to show the evolution of the hyperellipsoid characterization
regions as the number of load events increases and as «
subsequently decreases. The FOP centrifugal motor starts with
57 labeled load events after the first cruise. Its hyperellipsoid
region is created with 5.68 standard deviations (noted as 5.68¢
in the figure), which is on the upper end of possible values
for . After ten cruises there are 1131 load events. The new
hyperellipsoid region uses 3.31 standard deviations, which
is now on the lower end of possible values for «. For the



CPP pump, after one and ten cruises, there were 48 and
561 labeled load events, respectively. Thus, the hyperellipsoid
regions were created with 5.73 and 3.98 standard deviations,
respectively. For both loads, the rotation of the hyperellipsoid
is approximately the same after one cruise as it is after ten
cruises, meaning the drift has continued along approximately
the same major axis.

B. Test for Overlap

To check for overlap of the hyperellipsoid regions, the
approach of [32] is used, in which the overlap condition is
developed as a root-counting problem of a convex polynomial
K (X). This polynomial represents the hypothetical circum-
scribing hyperellipsoid appearing in the region between the
two hyperellipsoids under consideration. K (\) is generated
using the shape and center of both hyperellipsoids, where
E and m from Eq. (2) represent the shape and center,
respectively. For two hyperellipsoids with shapes A and B,
and centers ¢ and d, respectively, every point, «, in the union
of both hyperellipsoids must satisfy

Mz —c)TA(x —c)+(1-N)(x—-d)"B(x—d) <1, @)

where A € [0, 1]. This inequality is then transformed into the
following representation of a hypothetical hyperellipsoid with
shape E) and center m) that circumscribes the region of
intersection of the two hyperellipsoids:

( —m\)TE\(x —m)y) < K(\), )

where
E,=)A+(1-)\B. (6)

The convex polynomial K (\) is given as:

-1
K(\) = 1—(d—¢)” (131 4 1A1) (d—c). (7)
1—A A

A necessary and sufficient condition for the two hyperellip-
soids to not overlap or touch is for there to be a value of A
in (0,1) such that K(\) < 0. Since K (A) is convex, all that
is required is to count the roots of K (A) on (0,1). Rather
than using symbolic math to solve for the roots of K (), [32]
presents an algorithm to compute P(\) = det(Ey) - K(A),
which is also convex and has the same roots in (0, 1) as K ().
Using Sturm’s theorem as described in [33], the number of
roots of this polynomial in (0, 1) can be efficiently computed.
Sturm’s theorem is used to generate a “Sturm sequence” of
polynomials using polynomial differentiation and division. By
counting the number of sign alternations in these sequences,
the number of polynomial roots in the given interval can
be computed. If there are two roots, the hyperellipsoids do
not overlap and the two loads are considered “separable.”
Otherwise, the hyperellipsoids either are tangent or overlap,
and the two loads are considered “non-separable.”

This method works as long as A — B is invertible. It is
assumed that this will be the case since the radii of two given
hyperellipsoids are very unlikely to be exactly the same. With
this overlap test defined for two hyperellipsoids, several load
characterizations can be checked for overlap two at a time.
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Fig. 11: Hyperellipsoids in the Qs versus P, feature space
for the FOP centrifugal motor and CPP pump at various points
in time.

TABLE I: Shipboard loads in dataset.

Load

FOP centrifugal motor

FOP feed pump

MPDE jacket water (JW) heater
MPDE lube oil (LO) heater
MPDE prelube (PL) pump
SSDG jacket water (JW) heater

Shipboard System
Fuel Oil Purifier (FOP)
System

Main Propulsion Diesel
Engine (MPDE) System

Ship Service Diesel Gen-
erator (SSDG) System

Controllable pitch propeller (CPP) pump
Graywater pump
Bilge and ballast pump

Additional Engine Room
Loads

Detecting overlap between a set of loads will require at most
L(L —1)/2 overlap checks, where L is the number of loads.
An advantage of the hyperellipsoid region is that its overlap
check does not depend on the number of load observations.
That is, the overlap test is computed with the N-dimensional
hyperellipsoid parameters, not with individual points. As a
result, the computational power required for this check does
not increase as the number of load events increases.

Fig. 11 shows the hyperellipsoid characterization regions
for the FOP centrifugal motor and CPP pump from Fig. 9 and
Fig. 10, respectively. After one cruise, even though the two
loads are clearly linearly separable, the hyperellipsoid charac-
terization regions are overlapping. The FOP centrifugal motor
and CPP pump data points have high enough variability for
the separability check to anticipate future misclassification of
the CPP pump and FOP centrifugal motor. The hyperellipsoid
regions continue to overlap for subsequent cruises.

IV. METHOD DEMONSTRATION

To validate the utility of the separability check on a larger
dataset of loads, nine loads from a USCG vessel are presented.
The nine evaluated loads are listed in Table I. A dataset
was assembled from the first two cruises of the vessel after
installation of the NILM, from August 2016 to March 2017.
The hyperellipsoid boundaries are plotted in Fig. 12 and
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Fig. 12: Hyperellipsoids in the ()55 versus P; feature space
for nine loads after one cruise of data collection.

TABLE II: Table of pairwise load separability in Q55 versus
P, feature space after two cruises of data collection. “S” rep-
resents separable pairs of loads; “N” represents non-separable
pairs of loads.

Load ‘ Ballast FOP Feed MPDE PL  Graywater CPP
FOP Cent S S S S N
CPP S S S S
Graywater N S N
MPDE PL N S
FOP Feed N

Fig. 13 for the nine loads after the first cruise and second
cruise of data collection, respectively. After only one cruise,
the CPP pump overlaps with the FOP centrifugal motor region,
as was previously described. Also after only one cruise, the
bilge and ballast pump region overlaps with the graywater
pump, MPDE prelube pump, and FOP feed pump regions.
This shows that the output of a given classifier is highly
unpredictable for these four loads. The drifts of the MPDE
prelube pump and graywater pump are not significant enough
after one cruise to fail the overlap test. However, after two
cruises the ensuing load drift results in the regions overlapping.
The three heater loads have less variance in QQss and P,
and thus have tighter hyperellipsoids (hence why the SSDG
JW’s hyperellipsoid is barely visible at the plot’s zoom level).
The hyperellipsoids for these heater loads do not overlap with
any other loads, indicating that the feature space provides
sufficient separability for these three loads. Table II shows
the separability check results for each pair of loads in the Qs
versus P, feature space after two cruises of data collection.
Only the six loads that were non-separable with at least one
other load are included.

Two classifiers were trained with the dataset from the first
two cruises to validate the problematic overlap identified by
the separability check. A linear support vector machine (SVM)
and deep neural network (DNN) were chosen as examples
to demonstrate how concept drift can cause performance
degradation for both linear and non-linear classifiers. Different
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Fig. 13: Hyperellipsoids in the ()55 versus P; feature space
for nine loads after two cruises of data collection.

classifiers may have slightly different results. The data was
split into 80% training and 20% validation, with data stratifi-
cation to allocate load events evenly based on class frequency.
The trained models had perfect classification accuracy for all
load events in the validation dataset (which is a subset of the
data from the first two cruises) for both classifiers. That is,
without any consideration for load drift, this would appear to
be a sufficient feature space. However, when the model was
then tested on the data collected on the USCG vessel for the
eight later cruises (from April 2017 to September 2020), drift
of several loads in the feature space resulted in significantly
reduced accuracy. Fig. 14 shows the decision boundaries (from
the models trained on the first two cruises) and the data points
from the last eight cruises. Fig. 15 shows the normalized
confusion matrices for all loads that did not have an perfect
accuracy, where for the DNN the training and testing were
performed ten times and results averaged. There are many
separators that can accurately classify the training data, such
as the decision boundaries shown in Fig. 14. However, these
decision boundaries assume a static dataset. Thus, when the
loads drift, the misclassification they cause is similar for both
classifiers, as shown by the similar confusion matrices. For
both classifiers, as anticipated by the separability check, the
CPP pump is often misclassified as the FOP centrifugal motor,
the MPDE prelube pump is often classified as the graywater
pump, and the bilge and ballast pump is often misclassified
as the FOP feed pump. Also as expected from the separability
check, the three loads that do not show any degradation in
classification performance are the SSDG JW heater, MPDE
JW heater, and MPDE LO heater.

After two cruises of data, although the trained classifiers
showed that the data was classifiable at the time, the classifiers
were not reliable as more data was collected. The problematic
drift is anticipated by the separability check. In fact, the
hyperellipsoids for two cruises of data and ten cruises of data
are relatively similar even with further load drift and with a
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Fig. 14: QQss versus Pss boundaries, trained with a linear SVM
(top) and DNN (bottom) using the first two cruises of data
collection. The data points for eight later cruises are plotted.
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Fig. 15: Normalized confusion matrices for linear SVM and
DNN classifiers trained on the first two cruises of data and
tested on the eight later cruises using a two-dimensional
feature space.

large difference in number of load events. For example, Fig. 16
shows the hyperellipsoids (as dashed lines) and data points
after ten cruises of data for the six loads that did not have
perfect accuracy. Also plotted are the hyperellipsoids (in solid
lines) after two cruises of data, which were previously shown
in Fig. 13. As shown, the drift is relatively well characterized
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Fig. 16: Hyperellipsoids (dashed) and data points in the Qg
versus P, feature space for six loads after ten cruises of data
collection. Hyperellipsoids (solid) are also drawn from the first
two cruises of data.

after only two cruises since the hyperellipsoids are drawn with
a higher number of standard deviations for fewer load events.

Due to the identification of the problematic drift, additional
features should be added to the feature space. To demonstrate,
the maximum apparent power at inrush (Speqr) and the
transient time are added to the feature space, since they are
not redundant with steady-state power. The overlap test is run
after two cruises of data collection using this four-dimensional
feature space (Pss, Qss, Speak, transient time). Since the
features do not have common units, min-max normalization
is applied, such that for each feature axis the range of data
is transformed into [0,1]. This scaling is applied for both
the overlap test and for training classifiers. Only the CPP
pump and FOP centrifugal motor hyperellipsoid regions are
overlapping in the separability check, indicating that this is
likely a more suitable feature space than the demonstrated
two-dimensional feature space. Both a DNN and SVM (using
a radial basis function kernel) were trained and tested to
validate the reduced problematic overlap. Similar to before,
the first two cruises of data were split into 80% training and
20% validation, with data stratification. The model was then
tested on the eight later cruises. For the DNN the training and
testing were performed ten times and the results averaged.
The confusion matrices are shown in Fig. 17, for the same six
loads that are shown in Fig. 15. The results have significantly
improved, as predicted by the separability check.

V. CONCLUSION

The hyperellipsoid region shown is only one example of
possible regions that can be fitted to available load data for
the purposes of gauging the separability of a particular feature
space. In different domains with different types of drift, alter-
nate feature space characterizations could be conceived, such
as N-dimensional rectangular prisms or single /N-dimensional
hyperspheres, as long as a method exists to test for overlap of
the geometric regions that are produced.
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Electromechanical load behavior may change due to normal
variation, such as inherent mechanical variability or a change
in operating conditions. Changes in load behavior could also
be indicative of an underlying fault or degradation of various
internal mechanisms that may require repair or replacement.
For a nonintrusive load monitoring classifier, this manifests
as concept drift that can reduce classification performance
on future data or even make the load completely indistin-
guishable. Understanding the physics and time-dependency
behind changing load behavior can inform feature space selec-
tion improvements, enabling the applicability of nonintrusive
monitoring for equipment health monitoring and diagnostics.
The presented separability check ensures the selection of a
physically informed feature space that allows for load disag-
gregation, even when loads drift over time. This is especially
important for isolated, microgrid, and generation-constrained
systems, where system reliability is critical.
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