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Abstract—Changing grid conditions challenge modeling as-
sumptions for power systems. For example, electrical signatures
may differ between “islanded” and ‘grid-connected” modes
of a microgrid’s operation. Unmodeled variance and shifts in
data distributions confound data-driven techniques that model
practical physical systems. With proper preprocessing, knowl-
edge of the system’s underlying physics can guide the training
and use of data-driven models of load behavior to provide
domain adaptation that ‘“undoes” these effects. These adaptation
techniques provide greater feature space separability, enabling
better visualization, clustering, and load identification. This work
presents a general technique for deploying physics-informed
domain adaptation on monitoring systems for microgrids with
evolving voltage conditions. Case studies across multiple types
of electrical loads demonstrate that these techniques can remove
significant standard deviation in electrical features, ranging here
from a 37.8% to 89% reduction.

Index Terms—Power system measurements, nonintrusive load
monitoring, domain adaptation

I. INTRODUCTION

Energy facilities of all kinds benefit from electrical moni-
toring. System faults that may not be obvious to watchstanders
are often plainly visible in electrical data [1]-[3]. In particular,
nonintrusive power monitoring provides a low-cost, scalable,
and retrofittable solution capable of fault detection and diag-
nostics (FDD).

For example, gradual equipment degradation creates subtle
changes in electrical signatures. A nonintrusive load monitor
(NILM) can track these changes over time and provide auto-
mated condition monitoring. However, changes in an electrical
system’s behavior due to reasons unrelated to load condition
complicates monitoring. Benign deviations in electrical sig-
nature, such as varying load tasks or grid conditions, may
obscure deviations in electrical signature due to faults.

Data-driven and machine learning techniques can help char-
acterize the typical electrical behavior for a specific piece of
equipment and the larger grid structure. However, statistical
learning techniques are not always robust in handling future
variability, whether pathological or healthy. In addition, mod-
ern deep learning methods are often designed to prioritize
predictive performance rather than interpretability.

Data transformation and preprocessing are critical steps in
automated and manual fault detection and data analysis on
energy systems [4]. This is especially true on ‘“nonstation-
ary” systems, in which important physical and environmental
system parameters fluctuate or drift over time. Preprocessing
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techniques informed by nonintrusive system measurements can
compensate for these nonstationary characteristics [5]. As an
example, consider the supply voltage waveform on an arbitrary
ac power system. The frequency of this waveform may remain
in a tight tolerance, but the rms value will deviate from its
nominal value by a considerable amount. To illustrate, IEEE
standard 1547-2018 defines continuous operation mode for
distributed energy resources as between 88% and 110% of the
nominal voltage [6]. Although loads are typically designed
to handle a range of rms voltages, their power signatures
inevitably take different forms when the rms voltage changes.
This lack of consistency creates problems for nonintrusive
pattern recognition techniques [7], [8]. Signature variability
due to grid conditions makes it difficult to characterize nor-
mal versus faulty electrical signatures. This paper presents
contributions to NILM power data preprocessing to reduce
the impact of grid variability on data classification, clustering,
and visualization. The organization of the paper is as follows.
Section II gives a literature review and background context
for nonintrusive load monitoring and the contribution this
work makes. Section III presents a functional technique for
removing variance unrelated to load condition, including a
parameter-free method. Section IV demonstrates a model-
based compression technique and a case study on field data
from a shipboard microgrid. Section V introduces a data-
driven compression technique and a case study with a power
electronic load. Section VI describes implementation details
for these techniques.

II. BACKGROUND AND REVIEW

Power monitoring aims to infer grid and load condi-
tions from a set of installed sensors. At the bulk power
grid scale, this takes the form of phasor measurement
units (PMUs), advanced metering infrastructure (AMI), and
synchro-waveforms. PMUs provide utilities with information
on power flow direction on and voltage angles [9]. AMI
often takes the guise of “smart meters” installed on residential
homes, providing utilities a coarse view into individual home
power consumption profiles [10]. Synchro-waveforms provide
time-aligned measurements of the actual grid waveforms at
multiple locations [11]. At the other end of the spectrum,
“intrusive load monitoring” measures individual load currents,
allowing precise state tracking and condition monitoring for a
set of loads [12]. However, the hardware requirements of this
method scale unfavorably with the number of loads monitored.



A. Nonintrusive Monitoring

Nonintrusive load monitoring lies between these two ap-
proaches in sensor complexity. Individual load information
is inferred from aggregate voltage and current sensing. First
proposed by Hart [7], nonintrusive load monitoring has since
been widely researched [13] and commercialized [14] for
residential systems. Sequential deep learning techniques have
become common in residential load disaggregation research
[15]. Residential NILM techniques are typically trained and
evaluated via supervised learning on publicly available bench-
mark datasets [8], [16]. In addition, most research focuses on
the “load identification” or “energy disaggregation” problem,
which seeks to itemize energy usage to each load on the
system.

In contrast, industrial NILM research and applications have
typically been more bespoke in their design. Common residen-
tial loads such as refrigerators, ovens, and air conditioners may
be similar to how they appear in training datasets. However,
industrial loads will frequently present an “evolving” profile
over time as the load condition changes [17], [18]. Individual
load signatures are typically not available before installing a
NILM, so training a NILM must be done with a relatively
scarce amount of data. Deep learning techniques have been
proposed and evaluated in laboratory scenarios. However,
practical applications are hindered by the low availability of
representative training data. As a result, techniques such as
correlation matching are typically used in NILMs deployed
in the field [19]. In addition, much of the value provided
by a NILM in an industrial site comes not only from load
identification and energy disaggregation, but also from fault
detection and diagnostics. Many studies have used electrical
monitoring to detect pathologies such as bearing faults [20].
Nonintrusive fault detection and condition tracking can be
performed, for example, by enumerating possible transient
signatures for known load failure modes [21] or tracking load
signature drift over time [17]. All of these tasks are frustrated
by grid conditions that change over time.

B. Domain Adaptation

In machine learning, domain adaptation refers to the ability
of a model to successfully perform a task on a distribution
of data potentially different than the training data [22]-[24].
As an illustration, Fig. 1 shows an example of a “domain
shift” The initial training data, shown by the filled shapes,
occupies a different region in some feature space than the test
data, shown by the non-filled shapes. For this classification
task, the decision boundary that separates the filled shapes
performs poorly on the non-filled shapes. However, the right
plot shows the data after being transformed into a new feature
space. Here, the distributions of the circles and triangles are
the same, and the decision boundary from training generalizes
well to the test data.

Domain adaptation research in nonintrusive load monitoring
typically seeks to preserve model performance when deployed
on a dataset different than the training set [25]. For example,
this may take the form of training a model on one building
and testing it on a different building [26]. In [27], the authors
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Fig. 1: Example of a domain shift and domain adaptation
in an arbitrary 2-D feature space. A classification model is
trained on the solid shapes, and the dashed line shows its
decision boundary. The model is then applied on the hollow
shapes. Due to a shift in the test domain from the training
domain, the decision boundary is no longer useful. Applying
a transformation X; — U, keeps the training and test data in
similar distributions.

demonstrate an adversarial unsupervised domain adaptation
technique for residential NILM settings. In [28], domain adap-
tation is shown as an example of a privacy-preserving measure
for residential NILMs, allowing inference to performed on a
home without training on its data.

In contrast with the studies in the literature, the domains
considered in this work represent different microgrid con-
ditions, rather than different homes or facilities. Microgrids
are typically designed to operate in ‘“‘grid-connected” and
“islanded” modes. For example, a shipboard microgrid uses
its own generators while underway, and the terrestrial power
grid when in port. The utility voltage waveform may vary
drastically between microgrid operation modes, creating a shift
in load behavior when the mode is changed. By measuring
the voltage waveform, a NILM can identify grid-connected
and islanded operation modes. Using either a physics-based
or data-driven understanding of how grid conditions map to
load behavior, this shift can be “undone” via the functional
domain adaptation method presented here.

III. FEATURE SPACE COMPRESSION METHODOLOGY

Although applicable to power systems of all kinds, this work
focuses on power monitoring for industrial microgrids. These
grids are broadly composed of three types of loads:

1) Resistive elements (such as heaters)
2) Grid-connected induction motors
3) Loads with power electronic front-ends

Each of these load types has a power signature that reacts
uniquely to changes in rms grid voltage. For example, resistive
and linear loads obey Ohm’s law. Accordingly, their power
signatures are proportional to the square of the rms voltage.
By contrast, induction motors and power electronic circuits
draw currents that are nonlinear in system rms voltage. In all
cases, power signatures take the form of different functions of
the rms voltage. This work presents preprocessing techniques
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Fig. 2: Plot of real power P; versus rms system voltage
V for a 1202 resistive load on a nominally 120 V grid.
For this load, the function f(V) = V?2/1209 models the
relationship between P; and V. Variance in P; due to changing
system voltage (shown with the triangle) can be mapped to the
nominal value (shown with the circle).

that account for the response of a particular load or load class
to changes in system voltage. These functional preprocessors
compute power signatures of arbitrary loads that are “com-
pressed” or insensitive to system voltage changes. The result is
power signatures that are more reliably classified by machine
learning tools. These techniques can be further extended to
other nonstationary system behavior, such as changing load
torque for an electric machine, enabling physics-informed
adaptation across domains and load types.

Physics-based techniques are useful since they require less
data than purely data-driven techniques. Monitoring installa-
tions and retrofits on industrial grids typically do not enjoy the
luxury of abundant training data, since this data would need
to be collected by such a monitor.

A nonintrusive load monitor (NILM) samples the voltage
and current on each phase at an aggregate point in the electrical
network. All downstream electrical activity appears in the
current signals sampled by the NILM. There exists a wealth
of nonintrusive monitoring approaches to disaggregation and
condition monitoring. This work focuses on “event-based”
monitoring techniques. A NILM extracts harmonic spectral
envelopes from high-bandwidth current and voltage signals
[29]. Load state changes appear as geometrically unique edges
in these spectral envelope streams. The NILM continuously
runs an event detector to find these edges and a classifier to
identify the load that produced them. Once the NILM identifies
the source of each event, it extracts useful features and metrics
for detecting faults and anomalous load behavior.

Steady-state power consumption is a useful feature that
reveals the physical task of a load. Consider an electric motor
driving a pump or ventilation system. When such a load
operates less efficiently (potentially due to a clog or blockage),
it may draw more real power in order to accomplish its task.
However, steady-state power can also change when the system

TABLE I: Estimated parameters for the machine in Section I'V.

Parameter Value
T 16.3 Q
Lis 74 mH
Lo 361 mH
L, 74 mH
rl 16.6 Q
We 2760 rad/sec
V' (rms line-to-line) 208 V
Rated Power 0.25 hp (184 W)
Rated slip 0.078
Rated Torque 0.6 Nm
Poles 4

Rated Speed 174 rad/sec (1660 rev/min)

voltage level changes, potentially due to normal variations in
the utility voltage waveform or changes in plant lineup. Au-
tomated fault detection algorithms can track “drift” in steady-
state features as a heuristic for load condition [17]. However,
these can mistakenly conclude that gradual changes in steady-
state power features caused by a drifting system voltage are
indicative of faulty load operation. Targeted, physics-informed
preprocessing is therefore useful for automated fault detection
and diagnostics.

A. Functional Signatures

Consider a load that draws in-phase and quadrature spectral
envelopes P, and QJ; at harmonic k [29]. Without loss of
generality, let P, be modeled as some function f of the
time-varying root-mean-square (rms) grid voltage V' such that
Py = f(V). In practice, this rms voltage is computed over one
or multiple line cycles to reject noise and fast disturbances.
Let the nominal rms voltage (e.g. 120 V or 480 V) be denoted
as V*. Fig. 2 shows the graph of an example functional
dependence of P; on V. Here, the load is a 1202 resistor
and the system’s nominal rms voltage is 120 V. To remove
sensitivity to grid voltage changes, load data at voltages not
equal to V* (shown with the triangle) can be shifted to the
nominal region around (V*, f(V*)) (shown with the circle).
The following produces compressed spectral envelope value
P; from an observed P; and V:

v
Br=B%y

(D

When V =V, E is simply P, since all deviations must be
due to the load and not deviations in the rms voltage. When P
matches f(V'), P is simply f(V*) since the load’s operation
matches the model at that value of V.

This compression technique is linear in P; and as such,
maintains a consistent zero point. This is beneficial for cor-
relation score-based pattern matching. Transients representing
load state changes are typically processed such that they either
begin or end at zero, depending on the state change. The
linearity of this technique preserves the zero point to avoid
introducing biases in correlation matching.
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Fig. 3: Torque-speed curves with varying rms voltages for the
machine in Table L.

B. Parameter-Free Compression

For a certain class of functions f, Eq. (1) reduces to a
form independent of the parameters in f. Specifically, if f
is a homogeneous function, it has the property that there is
real number b associated with f such that f(AV) = AP £(V),
where A is any arbitrary real number [30]. For exponential
functions, b is the value of the exponent. For these functions,
Eq. (1) can be rewritten as follows:

Vo) HV/VIV)
fv) fvy
Then, by exploiting the homogeneity of f, this can be further
reduced as follows:
* b * b

ren(v) wenlv) o
Thus, all dependence on f vanishes. This allows for parameter-
free functional compression, and forms the basis for the tech-
niques in [5]. Examples of loads with homogeneous functions
f include the following:

o Constant resistance: f(V) o< V2 (b= 2)

o Constant current: f(V) < V (b= 1)

 Constant power: f(V) 1 (b=0)

Homogeneity is useful here because compression does
not require abundant data collection or parameter estima-
tion. Instead, compression only depends on the nominal and
measured rms voltages. However, nonlinear loads such as
power electronics do not have homogeneous functions. For
example, constant power loads with resistive losses may take
an gffine function f of V. Depending on the makeup of
the load, parameter-free compression may still provide useful
but suboptimal compression. For greater compression, these
loads require alternate approaches discussed in the following
sections, including parameter estimation via physics-based
models and data-driven characterizations.

P =P =P

2

IV. MODEL-BASED COMPRESSION

Physics-based circuit models yield constitutive equations
relating voltage dropped and current drawn by a load. From

1.0
-_— 110V
0.91 = 115V
- 120V
0.8 = 125V

130 V

Rated Torque

160 170 180 190 200

wrm (rad/sec)

140 150

Fig. 4: Zoomed-in torque-speed curves with varying rms
voltages for the machine in Table I. The dashed line shows
the machine’s rated load torque.
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Fig. 5: Induction machine steady-state per-phase equivalent
circuit with separated rotor resistances.

these equations and models, a function f relates power spectral
envelope quantities to the rms grid voltage. The singly fed
grid-connected induction machine serves as an example of a
load with a well understood physical model whose current
consumption is not necessarily linearly proportional to the rms
voltage [31]. This type of machine is the workhorse electrome-
chanical energy conversion device for industry. Around half
of all consumed power flows through industrial motors [32],
an application space dominated by induction machines [33].
Grid-connected induction machines are thus important targets
of fault detection and diagnostic techniques enabled by power
monitoring. This section uses machine analysis to characterize
the nonlinear relationship between induction machine power
and grid voltage. From this, a circuit model yields the function
f that enables feature space compression.

A. Machine Analysis

Electrical power drawn by a grid-connected induction motor
is either converted into mechanical work, stored in a mag-
netic field, or dissipated through resistive or magnetic core
losses. The electromechanical energy conversion process is
the primary contributor to the real power component of this
type of machine’s electrical signature. The energy conversion
process converts currents and voltages (electrical power) to
torque and speed (mechanical power). The rotational form
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Fig. 6: Computed steady-state total real and reactive for
the machine parametrized in Table I across a range of grid
voltages.

of Newton’s second law governs the mechanical dynamics of
rotating machinery:

dwrm,
dt

where J is the system’s rotational inertia, B,, is the mechani-
cal damping, T7, is the load torque, T is the torque produced
by the machine, and w,,, is the shaft mechanical angular
velocity. In steady state, dw;.,,/dt = 0, reducing the equation
to 7. = Bpwrm + Tr. The steady-state w,.,, is the shaft
angular velocity at which the motor develops the T, governed
by the torque-speed curve. Machine analysis often neglects
damping such that T, =~ T}, [34]. If damping is not negligible,
there will be additional electrical power consumption due to
friction. However, for machines designed to rotate at or close
to a nominal speed, this will simply add a constant offset
t0 Ppech of Bpw?,. For negligible damping, the output
mechanical power is Prech = TLWrm-

The following equation characterizes the torque-speed curve
for this type of machine:

3(P/2) (X7, /we)rysV?

[7“57“; + S<X72ns - XSSX:"’I")]2 + (T;’Xss + STSX;“T‘)Q(’S)
where P is the number of poles, X s = X5+ X, is the stator
combined reactance, X/, = X + X,,s is the rotor combined
reactance (referred to the stator), w, is the grid frequency, and
s is slip (s = %). The parameters P and X are
inherent to machine construction. Across rms grid voltages,
this expression yields a family of torque-speed curves [34].
Fig. 3 shows these curves for an example machine rated for
120 V (rms, line to neutral) across a 110 V to 130 V range.
Table I lists the parameters of this machine.

For a machine driving a constant load torque (such as a
conveyor or crane [35]), the steady-state operating point is
on the right side of the torque-speed curve. Fig. 4 shows a
zoomed-in version of Fig. 3 for this machine driving a 0.6 Nm
load torque. The operating points occur at the intersection of

T.=J + Bpwrm + 11, €]

e =

Fig. 7: Approximate induction machine per-phase inrush
equivalent circuit.

the rated torque (shown with the dashed line) and each torque-
speed curve. Each torque-speed curve is steep in this region,
and the “spread” of w,.,, operating points across the range of
voltage levels is small (less than 10 rad/sec). Accordingly, the
spread of output power P,c.p is also small (less than 6 W),
for this constant torque load. Thus, mechanical power is nearly
constant with respect to deviations in rms voltage for this type
of load.

B. Steady-State Circuit Analysis

Induction machines dissipate and store energy as they
deliver mechanical power. A nonintrusive monitor measures
machine real and reactive power consumption which includes
losses, energy storage, and electromechanical energy conver-
sion. The steady-state induction machine circuit model predicts
the salient power signatures of grid-connected machines. Fig. 5
shows the steady-state per-phase equivalent circuit of a three-
phase induction machine with separated rotor resistances and
ignoring core losses. Resistance r/. models rotor conduction
losses and resistance r..(1 — s)/s models electromechanical
energy conversion. For constant 77, circuit analysis or simula-
tion yields the constitutive relation between rms voltage V' and
per-phase current. These yield power spectral envelopes as a
function of a given rms voltage. Fig. 6 shows the steady-state
real and reactive power simulated with this machine model
across a range of rms voltages from 110 V to 130 V. For
this machine, the real power measured by a power monitor is
nearly constant, similar to the mechanical power Py,cch.

The reactive power signature of this type of machine
arises predominantly from energy storage in the magnetizing
inductance. If the values of the stator and rotor resistances
and reactances are negligibly small, the steady-state circuit
reduces to the magnetizing inductance in parallel with the
equivalent electromechanical resistance. For this case, all of
the reactive power flows through the magnetizing inductance
and the reactive power signature increases with the square
of the grid voltage. The effects of electromechanical energy
conversion and non-zero values of rotor and stator resistances
add a small offset term. The model suggests that an induction
machine’s reactive power dependence on rms grid voltage can
be described as quadratic plus a constant offset. This functional
form is used later for feature space compression.
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Fig. 8: Example induction motor inrush transient, shown in
both real and reactive power spectral envelopes for each phase.

TABLE II: Comparison of the standard deviation (denoted as
o) of the features in Fig. 9 before and after applying model-
based compression.

Feature  Original o (W)  Compressed o (W) % change
Pss 14 1.4 0
Qss 20.8 2.3 -89

C. Inrush Circuit Analysis

When an induction motor energizes, there is a sizable inrush
of current required to accelerate the shaft and reach steady
state. This inrush profile is a key feature for load identification
and condition monitoring [36]. An example inrush transient for
an induction motor is shown in Fig. 8. At ¢ = 0.4s, the real and
reactive powers rise sharply and decay to a steady-state value.
To analyze how these features depend on rms grid voltage,
assume that for a small fraction of time upon energizing, the
induction machine is inertially constrained such that w,.,,, = 0.
For this instant of time, the machine can be modeled with the
same circuit model as the steady-state case, but with unity slip
[37]. The electromechanical resistive component can therefore
be replaced by a short. Fig. 7 shows the resulting circuit model.
Importantly, all of the elements in this circuit model are linear
and obey Ohm’s law. Therefore, for the first instant of inrush
current, the machine appears to the grid as a linear load with
some impedance dependent on machine parameters. Unlike
the steady-state power spectral envelope quantities, this feature
will be proportional to the square of the rms voltage.

D. Lab Demonstration

The induction machine modeled in the previous sections
was set up to drive a constant 0.6 Nm load torque. This
machine was connected to a 3-phase power supply emulating
a nominally 120 V (rms, line-to-neutral) grid at 60 Hz. A non-
intrusive load monitor recorded phase currents and voltages at
8 kHz and then generated power spectral envelope signatures,
sampled at 60 Hz. Tests were conducted at steady state across
five line-to-neutral rms voltages ranging from 110 V to 130
V. Fig. 9 shows the resulting P, and (); data in blue. Each
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Fig. 9: Experimentally recorded steady-state real and reactive
power data from the machine described in Table I. The blue
points are uncompressed values. The orange points correspond
to compression using the model-based polynomials in Eqs. (6)
and (7). The orange points occupy a smaller region of the
feature space. Due to discrepancies between model prediction
and actual behavior, the bottom blue cluster (corresponding to
110 V) is compressed slightly above the rest of the compressed
data around 200 Var. However, it is still much closer to the
rest of the data than before compression.

discrete cluster corresponds to data at a different rms voltage
level. Informed by the model shown in Fig. 6, the following
functions fp and fg characterize the load’s steady-state real
and reactive power respectively to provide compression. For
real power:

fp(V) =134 W. (6)

As a result, the transformation in Eq. (1) is simply the identity
function and this feature is not changed. For reactive power,
the curve in Fig. 6 was fit with a 2nd-degree polynomial,
since the circuit of Fig. 5 contains linear elements with power
proportional to the square of voltage and a constant element:

fo(V) =192 W+ (31.6 A)V + (298 S)VZ.  (7)

Applying Eq. (1) to both P; and @), using fp and fq respec-
tively compresses this data into the orange cluster. This orange
cluster occupies a smaller region of the feature space than the
five blue clusters. Table II shows the standard deviation of
both features before and after compression.

E. Shipboard Demonstration

Model parameters for loads may not always be available,
especially on retrofit systems. For situations where physical
parameters are unknown, the parameter-free technique of
Section III-B can be applied. This technique relies on knowing
the load’s degree of homogeneity, which can be informed by
a physics-based model. As a demonstration, the microgrid
on USCGC Marlin, an 87’ patrol boat, uses a single-bus
configuration divided into “port” and “starboard” subpanels.
These subpanels provide power to a variety of loads ancillary
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Fig. 10: Strip plots of USCGC Marlin’s waste vacuum pump steady-state power features across two grid rms voltage levels (in
blue and orange) and after transforming the data with Eq (1) (in green). (a) Steady-state real power. (b) Steady-state reactive

power. (c) Peak real power. (d) Peak reactive power.

to engine operation, the majority of which are heaters and
induction machines [38]. A waste vacuum pump serves as a
case study load for these model-based compression techniques.
A three-phase, grid-connected induction machine rated at 2.5
kW drives this pump to create a vacuum in the ship’s sewage
system. This pump runs automatically when the pressure in the
system exceeds a setpoint. When in port, a 480 V (rms, line to
line) shore tie to the terrestrial grid powers the microgrid on
USCGC Marlin. When underway, onboard diesel generators
power the microgrid with 450 V instead. This discrepancy in
voltage levels produces two distinct power signatures for loads
on this ship’s grid, including the vacuum pump. Fig. 10 shows
a comparison of the distribution of steady-state and peak power
features when underway (denoted “Low Voltage”) and in
port (“High Voltage”), for both fundamental real and reactive
power. As expected from the previous analysis, the steady-state
real power distribution occupies a similar region across voltage
levels, but the three other features shift drastically. Informed
by the machine and circuit analysis from this section, the com-
pression technique of Eq. (1) is applied to these four features.
Since the machine parameters are unknown, the parameter-free

technique of Section III-B is applied, with b = 0 for the steady-
state real power feature and b = 2 for the others. The green
points in Fig. 10 show the resulting transformed distributions.
In Figs. 10b, 10c, and 10d, these transformed distributions
occupy smaller regions, showing a reduced variance due to
voltage deviations. However, in Fig. 10a, the transformed
distribution occupies the same region. As shown previously,
steady-state real power is nearly independent of rms voltage
deviations for this type of machine. The variance in this
feature instead arises from variance in load torque, which is
correctly preserved in the transformed distribution. Table III
shows the standard deviations of each of these features before
compression (the union of the blue and orange points) and
after compression (the green points).

V. DATA-DRIVEN COMPRESSION

Although loads such as heaters and grid-connected ma-
chines can be reasonably modeled with lumped parameter
circuit equivalents, more complicated loads make this ap-
proach intractable or impractical. For these loads, empirical
characterizations of f(V') provide tailored compression using



TABLE III: Comparison of the standard deviation (denoted
as o) of the features in Fig. 10 before and after applying
parameter-free compression.

Feature  Original o (W)  Compressed o (W) % change
Pss 376.4 376.4 0
Qss 345.4 214.8 -37.8
Py, 2843.5 1548.6 -45.5
Qpk 1772.8 863.2 -51.3

data collected either in situ or in simulation. This section
demonstrates this technique with a constant power dc load.

A. Rectifier Analysis

Power electronic loads, such as variable speed motor drives,
battery chargers, and computers, typically use a diode bridge
rectifier to interface with the ac grid. Fig. 11 shows the circuit
schematic of a generic three-phase grid-connected rectifier.
This rectifier powers an arbitrary dc load consuming power
Pj.. Simulating this circuit with a P, of 220 W across a
range of rms voltages shows that this load has a nearly constant
steady-state real power consumption. This matches intuition,
since the constant value of P;. makes it effectively a constant
power load.

However, a telltale feature set for power electronics is the
current drawn at harmonic multiples of the grid frequency.
These current harmonics arise from the nonlinear nature of
switching components. As the rms voltage changes, the firing
times of the diodes on this passive rectifier will also change.
Thus, the relationship between current harmonics and rms
system voltage is potentially more complicated than simply
being constant. To illustrate, Fig. 12 shows the values of the
in-phase fifth and seventh harmonic currents (scaled by the rms
voltage to form P; and P;) across five rms voltages from 110
V to 130 V. Most power electronic loads draw currents that
are half-wave symmetric, meaning that only odd harmonics
have any spectral content. Fifth and seventh harmonics are
examined here because third harmonics are ideally zero on
a balanced three-phase system. These two harmonics have
two distinct dependencies on V' that are both non-constant.
A NILM monitored the currents into a Matsusada RE series
45 V 45 A three-phase ac-to-dc power supply [39]. This
power supply uses a three-phase diode bridge rectifier with
an input filter, and resembles the circuit in Fig. 11. For a
constant Pj. of 220 W (drawn using an electronic load),
Fig. 13 shows values of P5 and P; versus rms voltage collected
experimentally. The trends of this data matches the simulated
data in Fig. 12, showing that the fifth and seventh harmonics
have different dependencies on V. Therefore, an opportunity
exists to compress these harmonics using a function f (V) that
describes them.

Deriving a closed-form f (V') for these harmonics is alge-
braically tedious. Instead, data-driven function approximators
such as linear regression, polynomial fit, and artificial neural
networks can provide an estimate using data collected either
empirically or in simulation. For demonstration purposes,
consider 2nd-degree polynomials fit via least squares to the
fifth and seventh harmonics, for both the simulated data in
Fig. 12 and experimental data of Fig. 13. Applying Eq. (1) to

Algorithm 1 Load matching algorithm before introducing
domain adaptation.

Input: Observed power transient P

Output: Best matching load [*
1: bestMatchScore <+ 0
2: for each load do
3 matchScore < correlationMatch(P, load.exemplar)
4 if matchScore > bestMatchScore then
5: [* < load
6
7
8

bestMatchScore < matchScore
end if
: end for

the fifth and seventh harmonic data using these functions yields
the plot in Fig. 14. The blue data points represent the original,
uncompressed in-phase seventh versus fifth harmonic data. The
orange points represent these same points after compression
with the function fit on simulation data. The green points
show these points after compression with the function fit on
experimental data. Due to the simulation model not perfectly
matching the actual hardware, the experimental data-informed
function provides the most compression.

VI. IMPLEMENTATION

Load identification in industrial NILMs typically involves
geometric correlation matching between observed transient
data and “exemplar” transients representative of each possible
load state change [19]. These transients traditionally use a
common set of features (such as fundamental real and reac-
tive spectral envelopes). To accommodate the feature space
compression techniques presented here, this framework needs
modification. Algorithm 1 shows pseudocode for the existing
classification scheme used by NILMs deployed in industrial
settings. Each load state change has its own exemplar, and a
NILM matches every transient event it records to an exemplar.
To do so, the NILM performs a correlation match between
the transient and every exemplar. The NILM then selects the
exemplar with the highest correlation score as the best match.
To accommodate the preprocessing techniques developed in
this work, Algorithm 2 shows a modified version of this
scheme. Before the correlation matching function is called for
each load, that load’s compression technique preprocesses the
transient signature and load exemplar. This can be done point-
by-point for every timestep in both the exemplar and observed
transient signature. The rest of the procedure remains the same.

A. Choosing a Compression Technique

Choosing a compression technique requires knowledge of
a load’s behavior, either from a physics-based model or from
empirical data. If the characteristics of a load are completely
unknown to an operator, a compression technique cannot be
chosen a priori. This section provides a guide for selecting an
appropriate compression function for a given load monitoring
application.

Parameter-free compression is ideal for loads whose power
spectral envelopes are homogeneous functions of grid voltage.
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Algorithm 2 Load matching algorithm after introducing do-
main adaptation.
Input: Observed power transient P
Output: Best matching load [*
1: bestMatchScore < 0
2: for each load do
3: P + load.compress(P)

> Using Eq. (1)

4: exemplar <— load.compress(load.exemplar)

5: matchScore < correlationMatch(P, exemplar)
6: if matchScore > bestMatchScore then

7: [* < load

8: bestMatchScore <+ matchScore

9: end if

10: end for

Loads known to be linear, such as resistors, capacitors, and
inductors are the simplest case. Linear loads’ power spectral
envelopes are proportional to the square of the grid voltage. In
addition, constant current loads have a magnitude and phase



independent of voltage, making their power spectral envelopes
proportional to the grid voltage. Constant power loads con-
sume a constant real and reactive power independent of grid
voltage. In each of these cases, parameter-free compression
completely removes the variance due to changing grid voltage.

Many loads, however, such as electromechanical and
switching power electronic loads, have more complicated
dependencies on system voltage. These dependencies can be
characterized either with parameterized physics-based models
or power data collected across several grid voltages. However,
if parameters and data are unavailable, heuristic information
on a load may allow partial parameter-free compression. For
example, a load known to have a combination of constant
power and resistive components may still be suboptimally
compressed with the parameter-free method, due to the varia-
tion in the resistive component.

As a concrete example, consider the induction machine in
Section IV. If all that is known is that the machine is a grid-
connected induction machine, parameter-free compression can
be applied to peak and steady-state features, as was done for
the shipboard pump in Section IV-E. Although only some
of the variance is reduced, this provides a useful starting
point before data is collected and parameters are identified.
If machine parameters become known, the process described
in Section IV-D can be applied to obtain better compression
using the equations for peak and steady-state real and reactive
powers. If parameters are never known but the operator can
identify a large set of load events in a dataset, the technique of
Section V can be applied to fit an empirical model to the data
(rather than using a parameterized equation such as Eq. (5)).

B. Computational Costs

Applying the compression technique increases the infer-
ence time for each classified event. Eq. (1) is applied to
the incoming transient signature at the observed voltage V.
For the model-based and data-driven techniques, this requires
evaluating f(V') and f(V*), which can be precomputed ahead
of time for the nominal voltage V*. One multiplication and one
division operation are then required to preprocess every point
in the transient. Parameter-free compression using Eq. (3)
requires a division, a multiplication, and an exponentiation.
Real-time use of this technique requires that this can be
performed fast enough that compressing one transient does
not block compressing the next transient event. However,
on modern computing hardware, applying these three steps
(function evaluation or exponentiation, multiplication, and
division) are practically instant when compared to the time
a NILM will spend between transient events — often on the
order of seconds or minutes.

VII. CONCLUSION

Data variability unrelated to load condition frustrates non-
intrusive condition monitoring, especially on microgrids with
changing conditions. The techniques presented in this work
provide physics- and data-informed preprocessing techniques
to mitigate these effects, using system voltage as a case study.
The case studies presented in this work achieve reductions

in feature standard deviations from 37.8% to 89% on grids
with changing voltages. Future work involves applying the
techniques presented here to reduce data variance caused by
other changes in grid conditions. These may include evolving
temperatures, load torques, and system frequencies. For ex-
ample, induction motors that operate with two different torque
profiles may be compressed into one consistent signature using
physically informed analysis.
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