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ABSTRACT Field data from power system measurements is frequently disappointing. Utilities are geo-
graphically large (in some cases remote), interact with a wide range of users and use profiles, and contain a
burgeoning diversity of electrical loads. Meters and data collection systems for applications such as billing
and phasor measurement are tailored to gather information at a price point specific to their intended use.
Information recorded from these monitors can be surprisingly difficult to interpret and repurpose for other
utility applications. Many measurement systems internally record data at higher rates than the rate at which
they save or log final data. This paper demonstrates the value of implementing intelligent preprocessing of
power data that preserves information needed for a particular application. We compare ““typical” recorded
data to revised datasets to examine the effect of targeted data preprocessing on machine learning and load
monitoring applications. Spectral envelope preprocessing and V-I trajectories are used with raw data early
in the measurement process to permit a flexible trade-off between sample storage rate and resolution. The

UK-DALE dataset and newly acquired data from ship microgrids provide case studies for this work.

INDEX TERMS Nonintrusive load monitoring, data preprocessing, data analytics

I. INTRODUCTION

RACKING energy consumption in buildings remains

crucial for resource planning and policy development as
industries and economic sectors move toward a sustainable
energy future. Both residential and commercial buildings
account for a significant share of total energy consumption in
the United States and Canada [1]. As a result, many climate
change mitigation strategies focus on energy efficiency and
demand reduction [2], [3]. These strategies often require de-
tailed end-user consumption data, making high-quality power
monitoring critical.

Advanced metering infrastructure (AMI) is one common
example of instrumentation installed for one purpose (billing)
that also can give more detailed, second-to-second pictures of
power consumption [4], [5]. Data from instruments like AMI
meters, phasor measurement units, and smart circuit breakers
have all been tapped as “‘nonintrusive’’ sources of consump-
tion information. When pressed into service as nonintrusive
monitors, these and other devices offer hoped-for savings in
the expense of monitoring in comparison to metering individ-
ual loads. They provide a centralized source of data that, in
principle, can be combined with recognition algorithms that
disaggregate the behavior and condition of individual loads
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from the aggregate data stream [6]. In principle, accurate
disaggregation enables smart grid techniques such as power
monitoring, consumption prediction, and demand response
control. Nonintrusive energy disaggregation algorithms pro-
cess aggregate data to identify electrical signatures for each
load, relying on methods such as pattern matching, source
separation, or machine learning (ML) [7].

The relatively continuous data acquisition employed for
nonintrusive monitoring, as opposed to much less frequent
“meter reading,” produces troves of historical data that
quickly become unwieldy. AMI meters typify a painful trade-
off in collecting data for nonintrusive monitoring. Depending
on implementation, the meter internals may sample sensed
waveforms at relatively high speeds, e.g., many times per
second. However, monitoring studies using data sources like
AMI meters typically rely on saved output data from the meter
recorded at a slower rate, usually at most once per second
or slower. Just as a low-resolution image offers incomplete
information about a visual scene, low-resolution electrical
data fails to capture fine-grained temporal features. These
limitations challenge effective load identification. They may
hobble efforts to extract more nuanced interpretations of the
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data to support anomaly detection, predictive maintenance,
and detailed energy analytics.

This work provides an investigation into what is lost when
electrical data is insufficiently sampled, using the open-
access UK-DALE dataset [8] and new field data collected
from shipboard power systems used as practical examples
of microgrids. We apply spectral envelope preprocessing to
the raw current and voltage data (sampled at the kHz level)
to produce in-phase, quadrature, and harmonic spectral coef-
ficients sampled at the utility frequency (50 Hz or 60 Hz).
Careful preprocessing permits a flexible trade-off between
the retention of information and storage requirements. For
example, high-resolution data processed as spectral envelopes
can break data into multiple channels at sample rates more
modest than the initial recording rate. This approach permits a
flexible trade-off between memory storage requirements and
bandwidth preserved in a final data set. This paper compares
spectral envelopes derived from raw UK-DALE data with
processed aggregate power data (sampled once every 6 sec-
onds), revealing that a staggering amount of interpretable and
actionable load behavior information is discarded when data
is downsampled to the rate at which this data is often analyzed
in the literature.

The contributions of this paper are threefold: (i) we demon-
strate specific mechanisms by which undersampling can dis-
tort or omit NILM-relevant features in widely used data,
including transient cluster spread, aliasing-induced spurious
periodicity, and loss of harmonic and geometry signatures; (ii)
we show that spectral envelopes and V-I trajectories enable
an information-preserving trade-off between storage and res-
olution by compressing kHz measurements into compact per-
cycle representations; and (iii) we offer a practical approach
for sampling-rate selection grounded in load dynamics, high-
lighting when low-rate, meter-like data is sufficient and when
higher-rate acquisition is needed.

This paper is organized as follows: Section II provides
background on power computation and preprocessing tech-
niques. Section III shows several critical events and features
lost when undersampling using the UK-DALE dataset as a
case study. Section IV illustrates the shortcomings of under-
sampled data for pattern recognition and load identification.
Finally, Section V concludes.

Il. PREPROCESSING POWER

Nonintrusive electrical monitoring usually starts with sam-
pling voltages and currents at an aggregated service point.
These waveforms serve as raw data with maximal information
content, similar to raw image files from a camera or I/Q
data from radio spectrum monitoring. However, power system
waveforms may be highly redundant. As an example, one
period of a 60 Hz sinusoid can be described with several
thousand samples. Alternatively, this sinusoid can simply be
described with an estimated amplitude and phase, as shown
in Figure 1. Strictly speaking, the raw data contains “‘just
the facts” at each sampling point and makes no assumption
about the character of the data source. By contrast, the pre-
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FIGURE 1. Two data structures describe the current waveform on the left.
The top record is raw sample data, and the bottom record is an estimate
of the amplitude and phase from the raw data via preprocessing. The
preprocessed data structure occupies much less space than the raw data,
and contains feature relevant to electrical monitoring.

processed data contains parameter estimates that rely on the
assumption that the data source is a mostly pure sinusoid.
Appropriate choices for processing power system data can
preserve valuable information without necessarily demanding
excessive data storage. For example, assuming the sinusoidal
nature of the voltage data source reduces the dimensionality
of the data from N (the number of samples in a period) to
2. In addition, these dimensions (magnitude and phase) are
highly relevant to electrical power analysis. It is important
to note that this preprocessing technique is subtractive in
nature, meaning that information is lost when it is applied.
For waveforms that do not match the sinusoidal assumption, it
will produce misleading outputs. When waveforms do in fact
approximate the assumption, the savings in data storage and
transmission requirements can be impressive. A wise choice
of preprocessing will avoid losing valuable information while
minimizing storage and transmission requirements.

Preprocessing techniques for nonintrusive electrical mon-
itoring serve two purposes. Data is converted to a lower-
dimensional representation more amenable to bulk storage
and downstream processing. In addition, currents and volt-
ages are combined to produce electrical power, typically the
quantity of interest in downstream processing. This section
reviews different approaches that explore the trade-off be-
tween preserving information and generating excessive data.

A. TIME-AVERAGED REAL AND APPARENT POWER

The element-wise product of voltage and current shows the
instantaneous flow of energy through the aggregate monitor-
ing point. However, on a 60 Hz grid this quantity contains
a constant component and a component “pulsing” at 120
Hz. By contrast, time-averaged power quantities provide a
coarser view of energy flow that does not oscillate over time in
steady state. Each period of the utility waveforms is sampled
N times. Averaging the product of the voltage and current
waveform over these N samples yields one sample of the
average real power P, i.e., acommonly computed ‘‘metering”
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metric for power consumption:

.
P=—" "v[n]in]. (1)

n=0
One sample of P is created for every waveform period. This
preprocessing method reduces the data rate by a factor of
N. Measurements of real power are useful for billing, fuel
consumption estimation, and measuring energy conversion
between systems. However, some components of the current
drawn may contribute to reactive power and harmonic distor-
tion but not carry any real power. The time-averaged apparent
power S includes the effects of these waveform components.
By taking the product of the root-mean-square voltage and

current, as computed over N points:

S = % 2—: v2(n] Z_: i2[n] ]. (2)

n=0 n=0

These techniques reduce the data rate from 2N samples per
period (N samples for each waveform) to 1 sample per period.

Time-averaged real and apparent power streams provide
a low-data-rate summary of load composition. From these
quantities, the power factor (defined as P/S) can be estimated.
Inductive and capacitive loads introduce a lag or lead into
the current waveform, lowering the power factor via a dis-
placement factor [9]. Nonlinear loads that produce harmonic
currents also lower the power factor via a distortion factor,
since no net energy is transferred at frequencies other than
the utility frequency. However, P and S do not preserve infor-
mation on harmonic current composition and the lag angle of
the current.

B. SPECTRAL ENVELOPES

Spectral envelope preprocessing extends the benefits of time-
averaged power quantities to preserve reactive and harmonic
waveform characteristics [10]. If the voltage waveform is
sinusoidal with peak value Vi, v[n] can be replaced with
Vi sin(2mn/N) in Eq. (1). This equation can then be inter-
preted as a computation of the in-phase fundamental compo-
nent of the discrete Fourier transform (DFT) of i[n], scaled by
Vpk. This produces the in-phase or real fundamental power
spectral envelope Py :

N—1
\Z .
Py = ka Z i[n] - sin(27n/N), 3)
n=0
An analogous computation with a cosine instead of a sine
produces Q1, the quadrature or reactive fundamental power

spectral envelope:

Vi N1
01 = > iln] - cos(2mn/N). (4)

n=0
These two quantities preserve information on the lead or lag
between the current and voltage waveforms. This is partic-
ularly useful for identifying electric machinery that draws
significant reactive power with a lagging current waveform.
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To preserve harmonic information, the previous computa-
tions can be performed with the sine and cosine waves at a
harmonic multiple k of the utility frequency, producing Py
and Qy:

v, Nl
P = #‘ > i[n] - sin(2mkn/N), (5)
n=0
v, Nl
O = —ka Z i[n] - cos(2mkn/N). (6)
n=0

Many ac loads draw currents that are half-wave symmetric,
meaning the positive and negative components are equal in
size and opposite in sign. These half-wave symmetric wave-
forms contain no even harmonic components [9]. In addi-
tion, common waveform shapes such as square waves and
triangle waves have Fourier series components that decay as
k increases [10]. For practical purposes, k can therefore be
restricted to a limited range of odd values, such as {1, 3, 5,
7} to capture the fundamental and first three odd harmonics.
Saving Py, Q1, ..., P7, Q7 every period results in a data rate of
8 samples per period.

In addition to preserving fine-grained reactive power and
harmonic information, spectral envelopes have enhanced
quantization resolution compared to the quantized values of
i[n] [11]. To account for changing grid voltage amplitudes,
spectral envelopes can be augmented to either cancel or pre-
serve the resulting changing load power profile [12], [13].
Fundamental spectral envelopes can serve as phasors in tra-
ditional power system analysis, allowing “derived” streams
such as symmetrical components on 3-phase ac grids to be
computed [14].

C. V-1 TRAJECTORIES

Voltage-current (V-I) trajectories have emerged as a popular
preprocessing method [15]. Rather than extracting power
quantities, this method generates a graph of the ordered pairs
(v[n],i[n]) from the voltage and current waveforms respec-
tively, also known as a Lissajous curve. For linear loads
that do not draw harmonics, v[n] = Vy sin(27n/N) and
i[n] = Ly sin(2mn/N — ¢), where ¢ is the lag angle between
the current and voltage waveform. This generates an ellipsoid
whose angle and axes are determined by Vi, I, and ¢. When
¢ = 0 the resulting curve is a line, and when ¢ = 7/2
the resulting curve is an unrotated ellipse. This graph is
then discretized into a matrix that acts as a rasterized image.
General-purpose computer vision models can be fine-tuned to
classify these images to the respective load that created them
[15]-[18].

When the graph is discretized into an image, the amount of
information loss depends on the pixel size. In the theoretical
case with infinitely small pixels, all of the information from
v[n] and i[n] is preserved. However, as the pixel size increases,
small spatial features in the V-I trajectory corresponding with
harmonics are lost. When discretizing a V-I trajectory into
an M x M matrix, the resulting output data rate will be M?
samples per period. To illustrate, Figure 2a shows example
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FIGURE 2. Constructing a voltage-current (V-1) trajectory for a load with
fifth-harmonic current: a) Raw voltage and current waveforms, b) V-1
trajectory discretized and thresholded into a grayscale image with 80
discretization points, and c) V-1 trajectory image with 20 discretization
points.

Technique Data rate Runtime Utilization
qu (per period) | (per cycle) at 50 Hz
Raw waveform data 2N - -
Time-averaged real and 9 16.30 s 0.0815%
apparent power
Spectral envelopes with
K coefficients 2K 11.52 ps 0.0576%
VL rajectories with M e 31.72pus | 0.1586%
1scretization points

TABLE 1. Comparison of data rates and runtimes across preprocessing
techniques given in Section Il. The preprocessing runtimes represent the
average of the fastest 10 runs and were measured using a single CPU on a
M4 pro Apple processor. Utilization reports the fraction of the 50 Hz
real-time budget used.

voltage and current waveforms for a load that draws fifth-
harmonic current with a lead angle of 7/12. Plotting and
rasterizing the V-I trajectory with M = 80 yields the image in
Figure 2b. The loop-like features in the top-right and bottom-
left corners are due to the fifth-harmonic content in the current
waveform. Using a lower value of M = 20 yields the image
in Figure 2c. Although the general “figure eight” shape is the
same as in Figure 2b, the loops from the fifth harmonics are
not preserved in the discretization process.

Conventional power computation (e.g., time-averaged real
and apparent power) requires only per-cycle dot products and
rms calculations with linear complexity in the number of sam-
ples per cycle. Spectral envelopes add harmonic channels but
can still be computed efficiently by applying one fast Fourier

4

transform (FFT) to each line-cycle window and retaining only
the first few odd harmonics, yielding a per-cycle cost on
the order of one FFT plus lightweight bin extraction. For
the UK-DALE waveform stream (16 kHz at 50 Hz, i.e., 320
samples per cycle), real-time operation requires processing
50 windows per second. To make this practical constraint
explicit, Table 1 shows preprocessing runtimes for multiple
techniques under an identical windowing setup.

1Il. UNDERSAMPLING

For electrical monitoring, the quality of the output data is
highly dependent on the sampling rate. Too low of a sampling
rate causes interesting electrical phenomena to be distorted,
aliased, or eliminated from monitoring purposes. However, an
excessively high sampling rate creates computational prob-
lems. If a real-time monitor is unable to process a window of
data before the next window of data arrives, incoming data
will gradually accumulate in memory. Eventually, the system
will run out of memory and crash. In addition, too high of a
sampling rate means that data may exceed storage capacity.
In systems that store data locally for retrieval and periodic
upload to cloud storage, the size of the data collected between
retrieval times must be less than the local storage capacity.

In addition to computing constraints, the dynamics of the
monitored system should inform the choice of sampling rate.
The Nyquist criterion guarantees perfect reconstruction when
sampling at twice the system’s maximum frequency. For
example, a 60 Hz power system without harmonics can be
perfectly reconstructed by sampling above 120 Hz. However,
system frequencies may vary across line periods. The power
system’s frequency may be 60.01 Hz at one instant and 59.99
Hz the next. Techniques such as synchronous sampling effec-
tively use a variable sampling rate to align samples with signal
phenomena such as zero crossings. Finally, key information
often lies in short-lived phenomena like motor inrush cur-
rents. Rather than continuously saving data at a high sampling
rate, a low-rate continuous stream can be complemented with
short high-rate sampling triggered by event detection. In this
work, spectral envelopes computed synchronously for each
line cycle serve as a practical compromise between computa-
tional constraints and preserving informative load dynamics.

In [7], many widely used electrical monitoring datasets are
described, including UK-DALE [8], REDD [19], and PLAID
[20]. These datasets have been foundational to the develop-
ment and validation of numerous load disaggregation tech-
niques. Many of these datasets provide high-bandwidth (kHz-
level) raw waveform data and low-bandwidth (Hz-level)
power data. Most nonintrusive load monitoring (NILM) liter-
ature uses the low-bandwidth versions of these datasets due to
practical computational constraints. However, the trade-offs
in resolution and pattern recognition between the high- and
low-bandwidth datasets have largely been unexplored.

The UK-DALE dataset [8] provides an excellent case
study, both in its original form and in a “remastered,” high-
bandwidth form presented here. The UK-DALE dataset con-
tains the mains current and voltage data for multiple homes
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sampled at 16 kHz and aggregate and sub-metered apparent
and real power streams at one sample every 6 seconds (1/6
Hz). The 16 kHz raw waveform data provides a view of
the electrical behavior on an extremely fine timescale, with
320 samples per waveform period. However, as a matter
of practicality, this data grows prohibitively large on long
timescales. Even in compressed form, the 16 kHz dataset,
recorded from five houses (one of them tracked for 655 days),
takes 7.6 terabytes of storage — far too large to fit in memory,
and prohibitively large for many computer storage systems.
For this reason, many of the studies in the literature use the
much sparser 1/6 Hz apparent power dataset. This dataset
only occupies 3.5 gigabytes, which comfortably fits in a
modern computer’s working memory. However, drastically
downsampled data comes with a price, as transient events,
periodic load cycling, and harmonic signatures are lost.

Power spectral envelopes aim to strike a balance between
the undersampled apparent power data that fits reasonably in
memory and the raw waveform data that quickly overwhelms
even modern hardware. Benchmarks across several cheap
single-board computers show that they can be computed on
kHz-level data in real time on modern hardware [21]. By
storing output data at the utility frequency, a year’s worth of
data requires well under half a terabyte [10]. Using the 16 kHz
data as the input, we computed the power spectral envelopes
for the UK-DALE dataset at an output rate of 50 Hz (the UK
utility frequency). This section shows several examples of
interesting physical phenomena captured in the 50 Hz spectral
envelopes but either absent or distorted in the 1/6 Hz apparent
power data.

A. MISSING TRANSIENTS

When loads on a power system change state, there is a unique
transient ‘“fingerprint” between the previous and subsequent
steady states. These transient signatures are often critical for
distinguishing loads and performing equipment diagnostics
[22], [23]. For example, motor and compressor-based appli-
ances such as refrigerators and air conditioners demonstrate
this with short-lived inrush currents during startup. These
transient spikes are governed by individual machine parame-
ters, making them valuable for identification and diagnostics.
Figure 3 shows useful transient features captured from a
power spectral envelope stream during an example load turn-
on event. The top plot shows peak power P4 (the maximum
power value in the transient) and settling time Afy4ysiens (the
duration of the transient). The bottom plot shows the same
transient zoomed in on the y-axis, highlighting AP, the
change in steady-state power values. These geometric fea-
tures have been useful for matching algorithms in previous
NILM literature [6], [24].

As a concrete example, Figure 4 compares apparent power
measurements from the UK-DALE dataset’s Home 1, show-
ing a refrigerator turn-on event. The blue data stream shows
the spectral envelope values extracted from the 16 kHz wave-
form data, and the orange data stream shows the 1/6 Hz appar-
ent power from the UK-DALE set. The 1/6 Hz stream displays

VOLUME 11, 2023

000 <—Peak amplitude (Ppeqr)
=
<
. 2000
g
=
(@]
~
£ 1000
:5: Ps&,l Pfs,Q
- |
0
500
=400
<
% 300
~
2200
g
4% 100 <— Attra,ns’ienf _ APSS

=
o

0.5 1.0 5 2.0 2.5
Time (s)

FIGURE 3. Transient features such as peak amplitude (P,cq), shape,
steady-state levels (P ; and P ,) (top figure), and transient duration
("ttransient) (bottom figure) are useful for geometric event identification.
Additionally, these features also provide physical insights for electric
machine diagnostics and fault detection.

only a sharp step change in power, missing the large inrush as
the compressor starts up. In contrast, the spectral envelope
data captures a large power spike that quickly stabilizes at
steady state. The enhanced resolution of the spectral envelope
stream reveals the geometric features described in Figure 3.
By contrast, the 1/6 Hz apparent power data appears to have
no inrush or settling time.

B. CLUSTER SPREAD

Undersampling electrical data can not only discard but also
insidiously distort geometric features. Consider the inrush
example in Figure 4. If this data is undersampled so that only
one data point is recorded during the inrush event, this data
point may be at any part of the sharp rise and exponential-like
fall of the inrush. Assuming the load turn-on time and sam-
pling times are uncorrelated, this will result in a seemingly
random distribution of peak inrush values. Figure 5 shows
a feature space plot of several refrigerator turn-on events
for both the 50 Hz spectral envelope and 1/6 Hz apparent
power data. The 50 Hz data forms a well-defined, vertically
narrow cluster. The 1/6 Hz data, on the other hand, forms
a more ‘“‘spread out” cluster. This is because the measured
peak amplitude depends on how closely the sampling point
coincides with the actual maximum value of the inrush event.
Reducing cluster variance is important for machine learning-
based load identification and diagnostics [12]. Both the peak
magnitude and duration of transients can provide insights
for equipment health assessment, fault detection, and per-
formance optimization. These parameters can help identify
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FIGURE 4. Apparent power inrush signature of the fridge turn-on event in

both 50 Hz spectral envelope (top) and 1/6 Hz (bottom) data. Note that
both streams have the same time scale.
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FIGURE 5. Scatter plot comparison of fridge events’ peak and

steady-state apparent powers, for both the 50 Hz (blue cluster) and 1/6

Hz UK-DALE data (orange cluster). The spectral envelope cluster shows

less variability in apparent power peak (std dev =29.11 VA) compared to
the 1/6 Hz cluster (std dev = 611.40 VA).

potential issues like degraded insulation, mechanical wear, or
control system malfunctions before they lead to failures [24],
[25].

C. ALIASED STATE CHANGES

A key benefit of sampling electrical data at a higher rate is
the ability to capture rapid state changes. State change events
such as heating elements actuating, fan motors ramping up, or
thermostatic controller action often occur within fractions of
a second, far faster than a 1/6 Hz sampling rate can preserve.

6

17501 —50 Hz Spectral Envelope —1/6 Hz Apparent Power
=
= 1250
B
= 1000
g Hair dryer - Hair dryer
A~ turns off turns off
= 750
I
g
2 500
<
N
250 Hair dryer
. turns on
< Hair dryer turns on |\
0= HHHHH
0 20 40 60 80 100

Time (s)

FIGURE 6. Time-domain comparison of hair dryer operation in both 1/6
Hz data (orange) and the 50 Hz spectral envelope data (blue). The
higher-rate stream resolves a brief off-on state change (a short
interruption between samples) that is missed entirely in the 1/6 Hz data,
illustrating how sub-sampling-interval behavior can be lost.

For example, Figure 6 shows a hair dryer being operated in the
UK-DALE dataset’s Home 1. The 50 Hz spectral envelope
stream clearly reveals a brief time in which the user turned
off the hair dryer before switching it back on. However, the
1/6 Hz apparent power data completely misses this, since it
happened between samples. Stated simply, electrical behavior
that lasts less than one sampling period has the potential to be
missed entirely.

Many pieces of electrical equipment cycle through multiple
states in a periodic fashion. Loads such as a soldering iron
or tankless water heater have short duty cycles as heating
elements turn on and off rapidly to hold a temperature.
Others, such as compressors and space heaters, cycle on
longer timescales due to hysteretic control maintaining a set-
point. Some loads, such as household appliances, have longer,
multi-stage cycles as different tasks are performed. At a low
sample rate, these cycles become difficult or impossible to
resolve. This hides the distinct patterns that help identify spe-
cific appliances and their energy use. The washing machine in
the UK-DALE Home 1 illustrates this point. Its operation in-
cludes several stages with different power requirements, from
water heating to spinning, as shown in Figure 7. Zooming in,
Figure 8 shows that the individual agitator cycles can be seen
in the 50 Hz spectral envelope data. However, in the 1/6 Hz
apparent power data, these motor actuations blend together
into a jagged pattern without discernible step changes.

Similarly, for the soldering iron in the UK-DALE Home 1
(or any other rapidly cycling heating element), undersampling
can make the load appear as if it is running constantly at some
average power level. By contrast, sufficiently sampled data
will instead show short bursts of high power as the heating
element toggles on and off in quick intervals to maintain a
programmed temperature. Figure 9 illustrates how the 1/6
Hz apparent power data in UK-DALE forms an almost flat
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FIGURE 8. Washing machine periodic power consumption. The 50 Hz data
reveals distinct stage/actuation steps (short, repeated pulses consistent
with element/motor control), whereas the 1/6 Hz stream merges these
into a jagged average where individual cycles and step changes are
difficult to identify.

plateau. In comparison, the 50 Hz spectral envelope stream
reveals a pulsed or modulated power pattern governed by the
soldering iron’s control loop.

To examine the periodic behavior of these loads, the dis-
crete Fourier transform (DFT) yields the frequency spectrum
of their electrical signatures. Figure 10 shows the spectral
content of the washing machine data in Figure 8, both for the
1/6 Hz apparent power data and the 50 Hz spectral envelope
data. Clear peaks can be seen in the 50 Hz data at 0.04,
0.08, 0.12, and 0.16 Hz, corresponding to periods of 25,
12.5, 8.33, and 6.25 seconds, respectively. These frequencies
are harmonic multiples of the agitator turning on every 25
seconds. In the 1/6 Hz apparent power spectrum, these peaks
are nowhere to be found. A similar plot for the soldering
iron is shown in Figure 11. Again, the 50 Hz data shows
distinct, sharp peaks at a fundamental frequency of just under
0.2 Hz and harmonic multiples, providing a clear indication
of periodicity in the load’s signature. In contrast, the 1/6
Hz apparent power data shows a large spike around 0.02
Hz, corresponding to a period of 50 seconds. Examining
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FIGURE 9. Soldering iron periodic behavior in time domain: 50 Hz spectral
envelope (blue) and 1/6 Hz data (orange). At 50 Hz, repeated short
duty-cycle bursts are clearly visible; at 1/6 Hz, the same behavior appears
as a near-constant average level, obscuring the controller-driven cycling.

50 Hz Spectral Envelope
60 Undersampled Spectral Envelope
Clear peaks ——1/6 Hz Apparent Power
50
——— Clear peaks
=40
o
=
230
jte}
=
=
20
10 /
L7 N

(9.00 0.02 0.04 0.06 0.08 010 0.12
Frequency (Hz)

0.14 0.16

FIGURE 10. Washing machine magnitude spectrum for the 50 Hz spectral
envelope stream (blue), 1/6 Hz apparent power stream (green), and a
manually downsampled spectral envelope stream (orange). Peaks in the
50 Hz stream reveal the load’s short duty-cycle actuation and its
harmonics; these components are absent or strongly attenuated in the
1/6 Hz stream, reducing visibility of periodic structure. The corresponding
time-domain data is shown in Figure 8.

Figure 11, no obvious 50 Hz cycling component can be seen.
This peak actually has come about due to aliasing. Since this
load contains substantial frequency content up to 0.4 Hz, it
must be sampled at minimum at 0.8 Hz to avoid distortion
from aliasing. However, when it is sampled at 1/6 Hz, the
peak clearly seen at just under 0.2 Hz is aliased down to
0.02 Hz, even though no periodic behavior exists at this
frequency. Resampling the 50 Hz spectral envelope data to 1/6
Hz yields the spectrum in orange in Figure 11. A large peak
due to aliasing can clearly be seen around 0.02 Hz, matching
the green 1/6 Hz apparent power data from the UK-DALE
dataset. Undersampling this load’s electrical behavior creates
a false indicator of periodicity at a frequency unrelated to the
physical actuation of the load.
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FIGURE 11. Soldering iron magnitude spectrum for the 50 Hz spectral
envelope stream (blue), 1/6 Hz apparent power stream (green), and a
manually downsampled spectral envelope stream (orange). The low-rate
streams exhibit an apparent low-frequency peak that does not
correspond to the physical control cycle; it arises from aliasing of
higher-frequency content into the observable band, creating a misleading
indicator of periodic behavior at a different frequency. The corresponding
time-domain data is shown in Figure 9.

D. ABSENTEE HARMONICS

As electrification increases, we see widespread adoption
of devices that differ significantly from traditional resis-
tive and inductive appliances [26]. These include sophisti-
cated power electronics-based appliances such as variable
frequency drives (e.g., in HVAC systems, washing machines,
and dishwashers), tankless water heaters, heat pumps, in-
duction cooktops, and battery charging solutions for elec-
tric vehicles and micro-mobility devices [27]. These modern
loads introduce richer and more complex electrical signatures
that lend themselves to energy monitoring and management.
For example, harmonics in the aggregate current waveform
provide a telltale indicator of variable frequency drive (VFD)
operation [28].

In industrial power grids, devices with nonlinear compo-
nents, such as switching power supplies and variable-speed
motor drives, draw distinct harmonic currents. For example,
Figure 12 shows the highly distorted current waveform from
a shipboard VFD. The nonlinear nature of the diodes and
transistors during a line cycle results in currents drawn in
short bursts rather than a sinusoidal pattern. This introduces
harmonic currents into the upstream current draw seen by a
power monitor. Figure 13 provides the real and reactive spec-
tral envelope streams of the fundamental and 5th harmonic
spectral envelope components of the shipboard VFD shown
in Figure 12. The plots correspond to the VFD’s breaker
turning on and the subsequent power consumption at no load
condition.

These higher-order frequency components allow a nonin-
trusive load monitor to better disaggregate loads that would
seem identical when examining only fundamental power
quantities. These harmonic signatures effectively expand the
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FIGURE 13. a) Sum of the three phases of the real and reactive power of
a shipboard VFD operating at the a) fundamental frequency, b) fifth
harmonic component.

feature space available for classification. Spectral envelope
preprocessing preserves these higher-order harmonics from
the original data stream, while significantly reducing the
storage requirement [10]. Naturally, these harmonics (e.g., for
a 60 Hz grid, 180, 300, and 420 Hz) are completely invisible
to a 1/6 Hz sampling rate. However, advances in deep learning
have led to increased interest in voltage-current (V-I) trajec-
tory representations for NILM disaggregation. V-1 trajectories
plot the instantaneous voltage versus current waveform values
over one or more line cycles, creating characteristic patterns
or signatures across different types of loads. Unlike time-
averaged real and apparent power quantities, these trajectories
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FIGURE 14. Effect of reduced sampling rate on V-I trajectories for a
shipboard VFD: high-resolution (left) and low-resolution (right). The
high-resolution trajectory shows multiple “turn-backs” and small loops
associated with harmonic-rich current draw, while the undersampled
version becomes smoother and more ellipse-like, obscuring geometric
cues that image-based NILM methods can exploit.

preserve information about fundamental and harmonic com-
ponents of load current signatures.

Similar to the previous time domain examples, this tech-
nique is also sensitive to the sampling rate. A higher sam-
pling rate produces more detailed V-I trajectories that reveal
the harmonic characteristics of different loads. For example,
switching power supplies typically create distinct ‘““pinched”
patterns while resistive loads generate simple linear trajec-
tories. In contrast, V-I curves constructed from the lower-
resolution data lose detail and definition. This obscures im-
portant geometric features from harmonics that image recog-
nition models could otherwise take advantage of. Figure 14
(left) shows a V-I trajectory generated from voltage and cur-
rent measurements from the VFD in Figure 13. This trajec-
tory has an interesting shape that “doubles back™ on itself
multiple times (due to harmonics in the current signature). By
contrast, an undersampled version in Figure 14 (right) appears
more like a rotated ellipse.

IV. FEATURE SPACE ANALYSIS

The previous section demonstrated concrete examples of un-
dersampling missing useful physical phenomena for several
individual transients. However, for data-driven NILM appli-
cations, the patterns that several transients form in a given
feature space are often of interest for load identification and
diagnostics. This section presents two examples of lower
sampling rates causing decreasing feature space utility.

A. VARIABILITY IN EMBEDDINGS

If all load transients are sharp step changes, any sampling
rate that captures data before and after the step change will
capture all relevant information. This is easily explained by
the fact that a sharp step change has only one parameter:
the amount that the quantity changed. Accordingly, steady-
state features from a transient are essentially unaffected by
lowering the sampling rate. However, the way in which the
load reaches steady state is highly affected by the sampling
rate. To illustrate, Figure 15 shows several turn-on transients
for the refrigerator in the UK-DALE Home 1 power data. The
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FIGURE 15. Real and reactive power transients for fridge on events. The
top row has a data rate of 50 Hz, and the bottom row is downsampled by
a factor of 8. Downsampling smooths the transient shape and reduces
apparent between-event variability.
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FIGURE 16. Multidimensional scaling (MDS) embeddings of the real
power fridge on transients across multiple sampling rates. As the
sampling rate decreases, the embeddings collapse toward a tight cluster,
indicating loss of transient-shape information and reduced feature-space
separability.

left and right columns show real and reactive fundamental
power spectral envelopes, respectively. The top row shows
the 50 Hz data from Sinefit preprocessing. As is typical of
induction machines, a large inrush settles to a much smaller
steady-state value. However, possibly due to a start capacitor
disconnecting, the transient has a “bump’’ halfway through.
There is considerable variation across transients in this region.
The bottom row shows the same data, but downsampled by a
factor of eight. The variance across transients is much less
smooth as a result.

As the sampling rate decreases, every fridge turn-on tran-
sient starts to look the same. To illustrate this graphically,
Figure 16 shows the results of embedding the transients in
Figure 15 in a 2-dimensional space with multidimensional
scaling (MDS). For a set of data points with a chosen distance
metric, MDS maps these points to a lower-dimensional space
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such that, ideally, the pairwise Euclidean distances between
all of the transformed points match the pairwise distances
between the higher-dimensional input points [29]. The di-
mension of the data is reduced, allowing for data visualization
and clustering. In Figure 16, the blue data points are the em-
beddings of the 50 Hz in-phase spectral envelope data for each
fridge transient. The data is spread out into a small cluster in
the top left and a large cluster in the bottom right, with some
points in between. The orange, green, red, and purple points
show the embeddings generated for downsampled in-phase
spectral envelope data. As the sampling rate decreases, the
variability is ‘“‘squeezed’ until it all forms one cluster in the
purple 1 Hz data.

B. V-I TRAJECTORY DEGRADATION

As the sampling rate decreases, load V-I trajectories begin
to appear more like ellipses, which correspond to linear
loads. To demonstrate, the trajectory of the load in Figure 14
was successively downsampled by factors of 10 and 20 and
then pixelated with 80 discretization points. A second load,
a shipboard drill press, provides an additional comparison
example. Figure 17 shows the resulting V-I trajectory images
for both loads across the listed downsampling factors. Tra-
jectories were linearly interpolated using Bresenham’s algo-
rithm between data points to provide a visual guide [30]. A
higher downsampling factor (i.e., a lower sampling rate) has a
smoothing and “simplifying” effect, resulting in information
reduction. After a downsampling factor of 20, the previously
serpentine trajectories now resemble parallelograms.

The Frobenius norm of the difference and cosine similarity
between the two loads’ trajectory images serve as indicators
of their distinguishability. Table 2 shows these for several
downsampling factors. Each time the data is downsampled,
the difference between the VFD’s matrix (Figure 17a) and the
drill press’s matrix (Figure 17b) is computed. The Frobenius
norm of this difference matrix is then calculated and shown
in Table 2. As the downsampling factor increases from 1.0
to 16.7, the Frobenius norm decreases, indicating that the
two loads’ trajectories become more similar and less distin-
guishable as a result. Likewise, the cosine similarity between
the VFD’s matrix and the drill press’s matrix is computed
and shown in Table 2. As the downsampling factor goes
from 1.0 to 16.7, the cosine similarity increases, supporting
the conclusion that reduced sampling progressively collapses
distinct geometric features and augments apparent inter-class
similarity. It is worth noting that at a downsampling factor of
20.0, the metrics become non-monotonic because the trajec-
tory becomes extremely sparse and rasterization/interpolation
artifacts dominate. Thus, pixel-level similarity measures are
less stable in this extreme regime. Overall, the qualitative
degradation trends and the quantitative metrics agree for prac-
tically relevant downsampling levels, while the most aggres-
sive case highlights a limitation of image-based comparisons
due to discretization.

ML methods, ranging from traditional algorithms (e.g., k-
NN, SVM) to more sophisticated deep learning architectures
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FIGURE 17. Comparison of the V-1 trajectories of a shipboard a) VFD and
b) drill press with different downsampling rates. Each row corresponds to
the labeled downsampling factor (1.0, 10.0, 20.0). As sampling rate
decreases, fine loops/inflections are smoothed out and trajectories
become increasingly similar (e.g., the VFD's serpentine structure collapses
toward a simplified polygon/ellipse-like shape), reducing visual
separability between load classes.

Downsampling Frob.enius Norm ‘Co‘sin.e
Factor Difference Similarity
(Inter-class) (Inter-class)

1.0 4274.64 0.4846

10.0 4213.34 0.5025

16.7 3468.43 0.5956

20.0 5263.19 0.3847

TABLE 2. Frobenius norm difference and cosine similarity between the
VFD and drill press trajectory images at different downsampling factors.

(e.g., CNNs, RNNis), rely heavily on data richness. The more
informative the input features, the better the algorithms can
differentiate among diverse loads. With poor feature repre-
sentation (such as a downsampling factor of 20), many of the
small loops and inflections that distinguish the VFD from the
drill press are lost, complicating class separability.

V. CONCLUSION

Higher-quality data reduces the burden on machine learning
models, both in terms of training time and the amount of data
required. In this work, we qualitatively compare the well-
known UK-DALE dataset across two preprocessing tech-
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niques: time-averaged power and power spectral envelopes.
Many physically relevant phenomena are outright missed or
worse, distorted, when data is insufficiently sampled. We
present V-I trajectory analysis from shipboard microgrids
as the third preprocessing technique. Key benefits of higher
sampling rates include improved detection of transient events,
better characterization of periodic load behaviors, and har-
monic content preservation. With higher-quality data that
does not obscure relevant load behavior, classification be-
comes a relatively simple task.

The UK-DALE results reflect aggregate residential mon-
itoring with both low-rate saved data and higher-rate
waveform-derived streams, while the shipboard examples
provide an industrial-like setting with power-electronics and
motor-driven loads. While these datasets represent residen-
tial and microgrid environments, the distortion mechanisms
discussed here stem from general sampling effects and are
expected to arise in commercial and industrial deployments
as well, with severity depending on the prevalence of fast
transients and power-electronics-driven loads.
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