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Abstract—Averaging techniques are frequently applied when
sampling quasi-periodic signals in order to enhance signal fidelity.
This paper investigates the use of spectral envelope preprocessing
for evaluating power consumption and harmonic content drawn
by ac loads. A statistical characterization of a preprocessor
system’s resolution given analog input noise is derived. Resolution
is defined here as the ability to detect transient step changes in
power consumption. With these results, the concept of effective
number of bits is extended to this averaging system. Design
trade-offs in number of quantization bits, sampling frequency,
noise level, and minimum resolvable transient are explored. The
conclusions reached here generalize to any system in which
spectral envelopes are extracted.

Index Terms—Power monitoring, energy monitoring, power
computation, spectral envelopes, transient resolution, digital me-
tering

I. INTRODUCTION

A wealth of information about the operation of electrome-
chanical devices lies hidden in measurable signals. Many of
these signals can be characterized as being locally periodic.
That is, at some resolution or level of accuracy, a signal
exhibits periodicity, but contains nonperiodic characteristics
when observed on a longer time scale. Averaging techniques
can increase the accuracy and fidelity of acquisition of these
types of signals. Oversampling, both with direct quantization
and with noise shaping, can improve resolution at the expense
of sample rate, in a form of averaging [1]. Ensemble averaging
can make use of analog or “prequantization” noise to reduce
quantization error and improve resolution across ensembles
of periods [2]. An averaging technique that is particularly
useful for the monitoring of electromechanical equipment is
spectral envelope preprocessing, which allows for compression
of signals sampled at a high sampling rate while retaining
salient information about the signal’s harmonic content [3].
Spectral envelopes find use in a variety of application domains
[4]–[7]. They are particularly useful for power monitoring,
where extraction of in-phase and quadrature components is
desirable to approximate real and reactive power, respectively.
One application of power monitoring is energy disaggregation
using a nonintrusive load monitor (NILM), in order to identify
individual load operation from the aggregate meter data. For
this application, spectral envelope output data is typically fed
into a feature extraction system from which a number of
classification systems can be run [8].

When calculating spectral envelopes, voltage and current
signals are assumed to be locally periodic over one ac line
cycle. At sampling frequency fs and utility frequency f0, the
average number of samples in one period is N = fs/f0.

Fig. 1: Conceptual diagram of signal acquisition and prepro-
cessing system.

Assuming the voltage is well-regulated, or “stiff,” the reference
voltage signal is v[n] = Vpk · sin(2πn/N), where Vpk is the
peak voltage magnitude. A “preprocessor” calculates spectral
envelopes by taking local averages of the current signal
modulated by a sinusoid over a sliding window, using the
voltage signal as the phase and frequency reference [3]. Then,
the fundamental real (P ) and reactive (Q) power are:

P =
Vpk
N

N−1∑
n=0

i[n] · sin(2πn/N), (1)

Q = −Vpk
N

N−1∑
n=0

i[n] · cos(2πn/N). (2)

This is equivalent to the imaginary and real components,
respectively, of the discrete Fourier transform (DFT) [3],
scaled by −Vpk/N . The DFT transforms some signal i[n] into
Ik, where k is an integer representing the harmonic order:

Ik = F(i[n]) =

N−1∑
n=0

i[n] · e−jk2πn/N . (3)

The analysis presented in this work uses the fundamental
(k = 1) in-phase component (P ) as the preprocessor output
without loss of generality due to the orthogonality of sine and
cosine. For loads with a non-zero phase angle or with harmonic
content, similar analysis can be done for Q and higher-order
harmonics that will yield the same insights. An overview of
the signal acquisition and preprocessing system is shown in
Fig. 1.

Since spectral envelope preprocessing averages or sums
over many time points, the number of possible power values
is larger than the number of current sample levels that are
resolvable with an input quantizer of B bits [3]. However,
similar to the quantization artifacts that a quantizer introduces,
this averaging is associated with its own set of artifacts and
distortions present in the resulting downsampled output signal.
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The extra preprocessor output values are not evenly spaced
across the range of input amplitudes. Thus, the preprocessor’s
ability to resolve loads (i.e., to both detect and accurately
measure step changes), varies based on the input signal. When
using a preprocessor output as an input to a feature extraction
system for training a classifier, as in the case of nonintrusive
load monitoring, it is highly undesirable to have training
data that contains biases or inaccuracies, even if, or perhaps
especially if, they only predominantly affect certain ranges of
input signal values.

This work examines advantages of spectral envelope pre-
processing for power measurements and related measurement
systems. Design techniques are presented for optimizing the
resolution and linearity of spectral envelope data for power
monitoring, fault detection, and diagnostic applications. These
design techniques are illustrated by contrasting the perfor-
mance of two different hardware preprocessors. The effects of
noise on the power system and introduced by data acquisition
hardware are included. A new measure of the effective number
of bits or power resolution is developed for the output of
a preprocessing system in the presence of prequantization
noise, which is illustrated with data collected on a US Coast
Guard (USCG) Cutter. A design guide is developed for the
construction or modification of a data acquisition system using
a spectral envelope preprocessor, with relevant trade-offs and
considerations for parameter choices.

II. NOISE-FREE PREPROCESSOR PERFORMANCE

Spectral envelope preprocessing increases output resolution
by averaging over N sampled data points over one or more
periods of a quasi-periodic input signal [3]. We begin by
considering a a noise-free system with a stiff, sinusoidal
voltage. A sinusoidal, in-phase current with amplitude A
produces a fundamental frequency spectral envelope associated
with real power proportional to A. Quantized sampling results
in a discrete number of possible values, 2B , for each current
sample i[n], where B is the number of input quantizer bits.
Therefore, over an observation window, there are a finite
number of unique sampled waveforms of the current signal,
denoted as U [3]. In calculating spectral envelopes, the DFT,
shown in Eq. (3), maps each unique input current signal
to a corresponding sequence of unique frequency-domain
outputs, creating the same number U of unique preprocessor
outputs. Effectively, the preprocessor can discern U different
waveforms corresponding to different values of A. As derived
in [3], the total number of unique preprocessor outputs is:

U = 2B−1 +

N
4 −1∑
n=1

⌊
(2B−1 − 1) · sin

(
2πn

N

)
+

1

2

⌋
. (4)

This number of outputs can be characterized in terms of bits
by taking log2 U . For example, for preprocessors with input
bits B = 12 and B = 16 averaged over N = 133 data
points, the number of output bits are approximately 15 and
19, respectively.

Clearly, there are practical resolution benefits from averag-
ing. Current measurements are quantized in a stair-step fash-
ion, with equal spacing between each bit level. The averaging
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(a) 12-bit preprocessor.
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(b) 16-bit preprocessor.

Fig. 2: 12- and 16-bit preprocessor transfer characteristics for
a sinusoidal input current.
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(a) 12-bit preprocessor.
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(b) 16-bit preprocessor.

Fig. 3: Simulation of preprocessor nonlinearity for a 5 W load
cycling on top of a 10 W base load.

inherent to the preprocessor smooths this quantization. How-
ever, the preprocessor “transfer characteristic,” the mapping
between actual input power and the preprocessor output level,
is nonlinear.

Consider a range of resistive loads powered by a 120 V
rms sinusoidal source. Observed current amplitude is swept
from approximately 35 mA to 471 mA, corresponding to a
sweep in power consumption from 3 W to 40 W. To illustrate
the nonlinearity of the spectral envelope calculation, contrast
the outputs of two different preprocessors, one operating with
12-bit (B = 12) input sampling and the other operating
with 16-bit (B = 16) sampling, both with N = 160 and a
maximum quantizable current Imax = 300 A (corresponding
to approximately 25.5 kW for this system). In this work, all
examples use a current sampling rate of 8 kHz; this prepro-
cessor with N = 160 thus outputs at 50 Hz. The resulting
computations for P from Eq. (1) are shown in Fig. 2. The 12-
bit preprocessor in Fig. 2a shows visible “bumps” and sharp
edges forming nonlinearities in the transfer characteristic. The
width of the first bump in the plot approximately corresponds
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(b) 16-bit preprocessor.

Fig. 4: Preprocessor simulation showing correct differential
measurements.

to the difference in input power for one least significant bit
(LSB) of quantized input current. Fig. 2b shows a 16-bit
preprocessor that appears more linear at the same scaling.
However, the nonlinearities are still present, as shown in the
inset of Fig. 2b. The deviation of each “bump” from an
ideal linear transfer characteristic is most noticeable at the
lower end of the input power range. The transfer characteristic
becomes more linear as the input amplitude is increased. Thus,
for measurement of small loads or for preprocessors with
relatively few input quantization bits, these nonlinearities or
distortions can cause an appreciable bias of the preprocessor
output away from the correct value, both for single readings
and measured differences in readings.

Deviations from the ideal linear transfer characteristic can
introduce significant error in estimating the actual power or,
more generally, any spectral envelope, associated with a load.
For example, Fig. 3 shows the outputs of the 12- and 16-bit
preprocessors for a 5 W resistive load cycling on top of a 10 W
base load. The 12-bit preprocessor output is inaccurate at every
point in Fig. 3a. The step change shows a difference of 2.27
W, significantly different than the actual 5 W load demand.
That is, even a simple event detector looking at changes in
steady-state power demand would not find the expected 5 W
change. The 16-bit preprocessor’s output, shown in Fig. 3b,
is much more accurate. The output value for the base load is
10.01 W, and the output power of the base load and cycling
load together is 15 W.

The 12-bit preprocessor is unable to adequately resolve a 5
W difference with the 10 W base load. However, in regions
where the slope of the preprocessor output to preprocessor
input is approximately linear, the differential change would
be closer to the actual 5 W change, even if the measurement
at any single point is incorrect. This can be seen in Fig. 4 for
a base load of 7.45 W. The values before and after the first
step change in Fig. 4a are incorrect, at 8.53 W and 13.65 W
respectively, but the difference is close to actual, at 5.12 W. For
the 16-bit preprocessor, as shown in Fig. 4b, both the single
and differential output measurements are close to the actual
values. The values before and after the first step change are 7.5
W and 12.47 W respectively, and the difference is 4.97 W. In
a noise-free, idealized environment, the preprocessor’s ability
to make accurate measurements, both single and differential,
depends on the value of the signal being measured.
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Fig. 5: Preprocessor output standard deviation and mean value
for several intervals of shipboard data.

III. PRACTICAL PREPROCESSOR PERFORMANCE

Linearity can be improved by increasing the input bit
resolution. However, in a practical system, there are also other
factors, such as noise at different stages in the signal pro-
cessing chain, that can impact the preprocessor performance.
Any practical system will contain some non-zero amount of
prequantization noise. Due to the uncertainty in each measure-
ment, noise reduces the number of meaningful preprocessor
output values. However, prequantization noise can be either a
detriment or a benefit to system performance, depending on
the amount of noise and the preprocessor parameters.

A. Prequantization Noise

Analog distortions in the current signal prior to the quan-
tization stage produce prequantization noise. Prequantization
noise arises from many sources, including the thermal noise
in the amplifiers of the signal processing chain of the data
acquisition (DAQ) hardware [9]. Distortions can also result
from electromagnetic coupling in sensors and connections
external to the DAQ. Another source of distortion is high-
frequency current components from the physical operation of
other loads on the line, such as nonlinear loads and inductive
loads [10], [11]. While not noise in the strict sense, these
fluctuations in power drawn by other loads can affect the
preprocessor calculations and resolution.

The microgrid of USCG Cutter MARLIN serves as a
demonstration. Preprocessor hardware was used to monitor the
aggregate current of a subpanel which powers approximately
half of the ship. The variance in the preprocessor output
for real power (computed as the sum of three phases of
real power envelopes) tracks with the mean value of the
preprocessor output in steady state. Fig. 5 shows a scatter
plot of standard deviation versus mean of real power spectral
envelopes for the aggregate shipboard power in steady-state
operation. Low-variance values in the bottom left of the scatter
plot include resistive loads like heaters. Steady-state windows
with higher variance include the operation of loads with
significant harmonics or large fluctuations in power draw. An
important component of the preprocessor output variance in
this industrial environment arises from these fluctuations.
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(a) No prequantization noise.
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(b) A small amount of prequantization noise.
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(c) A large amount of prequantization noise.

Fig. 6: Preprocessor outputs as histograms for calculated input power values plus Gaussian noise, for a 12-bit quantizer.

These sources of prequantization noise are modeled as
uncorrelated additive Gaussian white noise (AGWN). The
amount of noise introduced into a system is characterized
using a signal-to-noise ratio (SNR). Consider a system with
a maximum quantizable current of Imax and an rms current
noise of σG. The maximum quantizable sinusoidal current has
rms value Irms = Imax/

√
2, and the SNR is defined as:

SNR = 20 log10

Irms
σG

= 20 log10

Imax

σG
√

2
. (5)

B. Transfer Characteristic Linearization

Adding or exploiting a small amount of Gaussian white
noise, that is, dither, into an analog-to-digital converter or
quantization system linearizes the mean output value of the
quantizer [12]. The beneficial dithering effect can improve
the accuracy of an acquired current signal, and can decrease
error in the preprocessor output [3]. The dithering benefit of
prequantization noise “propagates” through the preprocessor
system, and as a result, the relationship of the mean output
versus input gradually becomes more linear as noise is added
to the system. This effect is shown in Fig. 6, where prequan-
tization noise is gradually added to a system with B = 12
and N = 160. Here, the preprocessor transfer characteristic
is shown as a series of vertical histograms for a range of
input values, with the average of each histogram forming an
“average transfer characteristic.” The highly nonlinear average
transfer characteristic of Fig. 6a becomes more linear when a
small amount of prequantization noise is added in Fig. 6b,
and becomes even more linear when sufficient noise is added
in Fig. 6c. The preprocessor average transfer characteristic
becomes linear at an rms noise value of approximately one
half of the least significant bit of the input quantizer. In
Fig. 7, a vertical cross-section of Fig. 6c is shown for an input
power of 18.6 W, corresponding to a point where the transfer
characteristic is highly nonlinear in the noise-free preprocessor
of Fig. 2a. A Gaussian distribution is fit with the calculated
mean and standard deviation. As can be seen in the plot, the
mean output from this preprocessor is approximately equal to
the input power of 18.6 W. However, the correct mean value
does not come without drawbacks. The variance from the noise
increases the uncertainty in measurement, as evident by the
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Fig. 7: Histogram of preprocessor outputs for an input power
of 18.6 W with the same parameters as Fig. 6c.
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Fig. 8: Simulation of preprocessor linearity from noise for a
small load while a base load is running.

higher vertical spread of the histograms of Fig. 6b and Fig. 6c.
Measurements of the preprocessor output will therefore appear
to be “noisy.”

The same load cycle as in Fig. 3 is simulated again, but
this time 80 mA rms of Gaussian current noise is added,
for an SNR of 68.5 dB (the same amount of noise as in
Fig. 6c). The resulting P streams are shown in Fig. 8. For
the 12-bit preprocessor in Fig. 8a, the average value before
the step change is around 10.14 W and the average value
after the first step change, between 1 and 2 seconds, is around
14.76 W. The differential measurement is much closer to 5
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W, the true power consumption of the load, than the result
in Fig. 3a. The noise linearizes the transfer characteristic
and leads to more accurate average single and differential
measurements. For the 16-bit preprocessor in Fig. 8b these
values are around 10.06 W and 15.24 W respectively. Here,
the average single and differential measurements are similar to
those observed in Fig. 3b. The noise-free 16-bit preprocessor
transfer characteristic was already close to linear. Thus, adding
noise did not significantly change the average, but it did create
more uncertainty in any single output power measurement.

C. Effective Number of Bits

A reasonable level of input prequantization noise helps
linearize the preprocessor performance. More than this level
degrades the output estimates with undesirable noise. To
quantify the effect of prequantization noise on resolution
ability, the system’s “effective number of bits” is examined.
Per IEEE standard 1057 [13], effective number of bits (ENOB)
is defined as the number of bits of a theoretical quantizer
whose rms quantization noise equals the rms noise of the
system in question. For some system yielding output x, the
ENOB is:

ENOB = log2

(
xpk−pk

σx
√

12

)
, (6)

where xpk−pk is the full range of the system output and σx
is the rms noise and distortion of x. In this work, a liberal
use of this definition will allow a derivation of the ENOB of
the spectral envelope preprocessor output, given some amount
of prequantization noise. With the results of this derivation,
the effect of noise on the performance of the preprocessor in
terms of its number of meaningful “bits” can be examined.

The goal is to find both Ppk−pk, the full-scale swing possi-
ble in preprocessor output, and σP , the standard deviation in
the preprocessor output due to input noise. For this derivation,
σP is assumed to be constant across all input power levels. The
input current signal is now treated as a random process, I[n].
Using Eq. (1), the equation for the fundamental real power
spectral envelope (P ), for a window size of N , can be written
as:

P =
Vpk
N

N−1∑
n=0

I[n] · sin(2πn/N). (7)

It is further assumed that the input noise, represented here
as Ig[n], is white and Gaussian, and has zero mean and some
variance σ2

G. In order to show the effect of current signal
quantization on the preprocessor input, another assumption
is made that the distortion from quantization, represented
as Iq[n], can be approximated as white uniform noise with
zero mean and variance σ2

Q [1]. For a quantizer that operates
between −Imax and +Imax:

σ2
Q =

∆2

12
, ∆ =

Imax
2B−1

, (8)

where ∆ is the size of the least significant bit. These approx-
imations are suitable when the average preprocessor transfer
characteristic is well-approximated as linear, such as in Fig. 6c.
For convenience in derivation, the sum of Ig[n] and Iq[n] will
be represented as Io[n], which will also be white noise with

zero mean and variance σ2
o = σ2

G +σ2
Q (since Ig[n] and Iq[n]

are assumed to be independent). Thus, the full representation
of I[n] is as follows:

I[n] = io[n] + Ig[n] + Iq[n] = io[n] + Io[n], (9)

where io[n] is the deterministic input current signal. Since P
is now a random variable, its variance, σ2

P can be computed as
E{P 2}−E{P}2, where E{·} represents the expected value of
a random variable [14]. Due to the linearity of the expected
value operator and the fact that Io[n] is zero-mean, E{P}2
can be computed as:

E{P}2 =
V 2
pk

N2

(
N−1∑
n=0

sin

(
2πn

N

)
io[n]

)2

. (10)

Next, E{P 2} can be found by taking the expected value of
the expansion of P 2 and recognizing that the expected value
of the random cross term will be zero, since it is zero-mean.
The expected value of the deterministic square term will be
the value of E{P 2} found in Eq. (10). Thus, σ2

P will simply
be the expected value of the random square term. By rewriting
it as a product of sums with different indices and combining
the sums, the following expression for σ2

P can be found:

σ2
P =

V 2
pk

N2

N−1∑
m=0

N−1∑
n=0

sin

(
2πm

N

)
sin

(
2πn

N

)
E{Io[m]Io[n]}.

(11)
Because Io[n] was assumed to be white noise, the autocor-

relation of Io[n] is zero except for the zero-shift case, and
E{Io[m]Io[n]} becomes σ2

oδ[m − n]. Through the filtering
property of the delta function, the m summation and the delta
function can be discarded and m can be set equal to n:

σ2
P =

V 2
pk · σ2

o

N2

N−1∑
n=0

sin2(2πn/N). (12)

Using the power reduction identity and Lagrange’s trigonomet-
ric identity [15], it can be shown that for any integer N > 2,
the sum above will simplify to N/2. Thus, the expression for
σP becomes the following, since Vrms = Vpk/

√
2:

σP =
Vrms · σo√

N
=
Vrms

√
σ2
G + σ2

Q√
N

, N > 2. (13)

This implies that for some input current noise, the corre-
sponding preprocessor output noise will be the product of the
rms voltage and the rms current noise, but reduced as the
number of averaging points increases. This makes intuitive
sense, as in many statistical contexts variance tends to decrease
in proportion to the number of samples (N ) and the standard
deviation tends to decrease proportionally with

√
N . Next, it

is assumed that the full-scale preprocessor swing, Ppk−pk, is
approximately equal to Vpk ·Imax, i.e. twice the maximum real
power observable, occurring when there is zero phase angle
between the voltage and current.

With σP and Ppk−pk obtained, these quantities can be used
in the equation for effective number of bits given in Eq. (6).
In order to characterize noise as the third parameter in the
preprocessing system (alongside B and N ), a new parameter
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G is defined as the linear form of the quantizer’s signal-to-
noise ratio, as defined in Eq. (5),

G =

(
Irms
σG

)2

=
1

2

(
Imax
σG

)2

= 10SNR/10. (14)

G is then substituted into Eq. (13). σQ can be substituted out of
this equation and replaced with ∆/

√
12 due to the assumption

made previously about the character of the quantization noise.
Since ∆ = Imax/2

B−1 from Eq. (8), it can be substituted out
of the equation for ENOB. The product and quotient rules for
logarithms can also be used, and terms can be cancelled and
rearranged to obtain the final representation of the effective
number of bits of the preprocessor for a given B, N , and G:

ENOB = B +
1

2
log2

N

2
− 1

2
log2

(
3 · 4B

2G
+ 1

)
, N > 2.

(15)
This equation shows that for the effective number of bits of
the preprocessor, the number of bits from the quantizer (B) is
the baseline, and then some benefit is obtained from increasing
the number of averaging points (N ), but only logarithmically.
If there is no noise, that is, if G = ∞ (infinite SNR), then
the third term goes to zero, meaning that there is no penalty
in the effective number of bits from prequantization noise.
However, if there is prequantization noise, it will lower the
effective number of bits of the preprocessor approximately
logarithmically.

IV. DEMONSTRATION WITH HARDWARE

Spectral envelope preprocessors using two different data
acquisition boards are examined in this section. The first is
the LabJack UE9 data acquisition hardware, which obtains
data at a 12-bit input resolution. The second is the data
acquisition hardware of [16], which obtains data at a 16-
bit input resolution. Both boards sample voltage and current
signals at a 8 kHz sampling rate, for each phase of the power
system. One period is used for the spectral envelope window
with no window overlap, so the output stream has a sampling
rate equal to the line frequency (60 Hz). Thus, the average
value of N is 133.3̄, or approximately 133. Both DAQs’ signal
processing chains introduce approximately half an LSB rms
of prequantization noise into their preprocessors, resulting in
linear average transfer characteristics. Due to the difference in
number of bits, this means that the 16-bit DAQ contains less
noise than the 12-bit DAQ. The current sensor hardware is the
LEM LF-305 which has a maximum current limit of 300 A.
The quantizer is chosen such that its maximum quantizable
value, referred to here as Imax, is aligned with the maximum
value of the sensor (i.e., Imax = 300 A). If Imax is larger
than the maximum sensor value, there will be a degradation
in resolution since the LSB will be unnecessarily large; if
Imax is smaller than the maximum sensor value, there will be
clipping in the input signal if a value over Imax is acquired.

In Fig. 9, the ENOB for the preprocessor output versus
signal-to-noise ratio, as derived in Eq. (15), has been plotted
for the case of 12- and 16-bit preprocessors with N = 133.
Three operating points are marked. The leftmost operating
point is for both the 12- and 16-bit DAQs monitoring the
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starboard-side aggregate shipboard power of USCG Cutter
MARLIN (in this context, aggregate refers to metering the
entire panel and its collection of loads, as opposed to sub-
metering a smaller branch of the power delivery system). For
this point, the ENOB of the preprocessor output was obtained
by approximating the standard deviation of the steady-state
preprocessor output. Since there is so much noise, the calcu-
lated ENOB of both of these DAQs is approximately 10.4,
meaning the 16-bit DAQ holds no significant advantage here.
A comparison of the two DAQs’ power streams can be seen
in Fig. 10 for the starboard-side subpanel of USCG Cutter
MARLIN. In Fig. 10a and Fig. 10b, for the 12- and 16-bit
DAQs, respectively, an approximately 200 W resistive load is
energized on top of the aggregate shipboard power (at different
times, hence at different base loads), turning on at around
t = 0.5 s and cycling three times for one second on and two
seconds off. The load is equally resolvable for both the 12-bit
and 16-bit DAQs. In Fig. 10c and Fig. 10d, an approximately
15 W resistive load is energized on top of the aggregate
shipboard power, for the 12- and 16-bit DAQs, respectively.
The 15 W resistive load cycles three times, as in the previous
scenario, however it is not visible for either DAQ, because of
the large fluctuations in power drawn by other loads.

In Fig. 9, moving rightward from the leftmost operating
point, as the amount of noise decreases (SNR increases), the
ENOB of each preprocessor increases essentially linearly until
it reaches a point of saturation. For the 12-bit DAQ, the ENOB
saturates at around 15 bits, and for the 16-bit DAQ, the ENOB
saturates at around 19 bits. Note that these saturated values
approximately match the values calculated in Section II using
the formula provided in [3].

A second shipboard setup was configured to monitor an
individually submetered outlet with the same 12-bit and 16-bit
DAQs used previously. In this case, the dominant prequanti-
zation noise is thermal noise in the analog processing chain,
since no other load currents are being metered. The middle
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(a) A 200 W load on the aggregate power stream (12-bit DAQ).
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(b) A 200 W load on the aggregate power stream (16-bit DAQ).
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(c) A 15 W load on aggregate power stream (12-bit DAQ).
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(d) A 15 W load on aggregate power stream (16-bit DAQ).

Fig. 10: 12- and 16-bit preprocessor outputs in an aggregate shipboard microgrid for 200 W and 15 W loads.

operating point in Fig. 9 is for the 12-bit DAQ in a submetered
environment with internal noise of σG ≈ 80 mA (SNR ≈ 68.5
dB). The rightmost point is for the 16-bit DAQ in a submetered
environment, with internal prequantization noise of σG ≈ 5
mA (SNR ≈ 92.6 dB). The prequantization noise values can
be used to obtain the ENOB using Eq. (15). The middle and
rightmost operating points yield an ENOB of approximately
14 and 18, respectively. These are only slightly lower than the
maximum saturated value, due to the low amount of noise.

V. DESIGN GUIDE

Design of a spectral envelope preprocessing system requires
consideration of three parameters: number of quantization bits,
B; window length, N ; and signal-to-noise ratio, SNR. The
minimum resolvable load of the target application is another
parameter that is either tunable or fixed for a given system. The
minimum resolvable load can expressed either with effective
number of bits or with a ratio of minimum to maximum
resolvable powers. This section guides the design of a spectral
envelope preprocessing system based on parameters that are
either tunable or fixed for a particular system.

A. Measuring System Noise

The preprocessor quantizer’s signal-to-noise-ratio (SNR) is
the ratio of the square of the rms maximum quantizable input
current (I2rms) to the variance of the prequantization noise in
the current signal (σ2

G), as defined in Eq. (5). To determine
the SNR, the distribution of the noise is approximated as a
zero-mean Gaussian, whose variance must be either acquired
or designed. If the variance is not known a priori, it can
be approximated in multiple ways. If the current signal can
be measured with no loads drawing power, the standard
deviation of this signal can be computed over a window.

If current signal data is only available for an energized
system, a window of the current signal for steady-state power
consumption can be obtained, and then a three-parameter sine-
wave fitting algorithm can be applied [17]. The generated
sinusoid can then be subtracted from the current signal and
the standard deviation obtained from this resulting difference
signal. This method has the advantage that if the monitored
system contains variance that is not independent of the loads
energized, such as that in Fig. 5, it can find an approximation
of the standard deviation for any load configuration. Finally,
if the preprocessor transfer characteristic can be assumed to
be linear due to sufficient prequantization noise, the standard
deviation of the preprocessor output (σP ) over a window can
be calculated. Then, the standard deviation of the quantized
current signal (σG) can be approximated by rearranging Eq.
(13):

σG =

√
σ2
PN

V 2
rms

− σ2
Q. (16)

B. Choosing the Number of Bits

As shown previously in Fig. 10, increasing the number
of quantizer bits in the presence of excessive noise may be
fruitless. Thus, when designing a system to operate in noisy
conditions, the knowledge of the SNR and window length N
can be used with Eq. (15) to compare various candidate values
for B, and assess whether the marginal change in effective
number of bits of the preprocessor is worth the extra expense
of the increase in B. Due to the approximations made in the
derivation of this equation, it should only be used when the
preprocessor average transfer characteristic can be assumed to
be approximately linear due to sufficient prequantization noise.
For the case when the preprocessor transfer characteristic is
nonlinear, increasing B will result in an appreciable benefit in
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(a) 12-bit DAQ.
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(b) 16-bit DAQ.
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(c) 12-bit DAQ truncated to 10 bits.
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(d) 16-bit DAQ truncated to 12 bits.

Fig. 11: Comparison of four different preprocessors for a nominal 7.5 W load turn-on on an approximately 2.5 W base load.

the preprocessor’s ability to resolve small loads by reducing
the size of the nonlinear regions.

For example, Fig. 11 shows a comparison of four different
preprocessors for a nominal 7.5 W load energized on top of
an approximately 2.5 W base load (corresponding to the smart
plug used for cycling the load) in the submetered environment
on USCG Cutter MARLIN. Fig. 11a shows the resulting power
stream for the 12-bit DAQ. The prequantization noise lin-
earizes the average preprocessor output, leading to a difference
in the average steady state values of 7.06 W, close to the
correct value. Using the 16-bit DAQ, as shown in Fig. 11b,
the steady-state and difference in steady-state power values are
correct. The difference in steady-state when the load turns on
is approximately 7.5 W. Then, the number of bits is artificially
reduced through truncation for both DAQs. Fig. 11c shows the
power stream for the 12-bit DAQ downquantized to B = 10.
In this case, the load becomes barely visible. Reducing the 16-
bit DAQ to B = 12 results in a deterioration of accuracy, as
shown in Fig. 11d. Due to low noise, the transfer characteristic
of this case is nonlinear and the difference in power values
when the load is turned on is approximately 10.8 W, which is
clearly incorrect.

C. Choosing the Sampling Rate

The parameter N governs the number of data points in the
spectral envelope averaging window. For the case of a window
length of one period, N is the ratio of sampling frequency
to operating frequency. Broadly, N controls the shape and
smoothness of the transfer characteristic nonlinearities com-
pared to the “stair-step” transfer characteristic of a simple
quantizer. However, the marginal benefit of increasing N drops
off logarithmically. If the sampling frequency is not an integer
multiple of the operating frequency, then N will alternate

between different values for each spectral envelope calculation
window. For example, for a sampling frequency of 8 kHz and
an operating frequency of 60 Hz, every third window will
have an N of 134, and two out of every three windows will
have an N of 133, resulting in an average N of 133.3̄. As a
result of inconsistent window sizes, the preprocessor output
for this situation will appear to have “spikes” every third
sample, even for what should be a constant value. This can
be removed by using a rolling average of length three, at the
expense of smoothing the transients and potentially reducing
the ability to identify load transients. These fluctuations may
be inconsequential if there is a high amount of variance in the
signal. In this work, this effect is avoided in the simulations
by using a 50 Hz utility frequency, and it is ignored for the
60 Hz demonstrations since the fluctuations are negligible.

D. Ability to Resolve Small Loads

For a given system installation, there exists some minimum
load power consumption that can be resolved. Spectral enve-
lope preprocessing introduces two issues that impact the ability
of a system to resolve small loads. First, the nonlinearity of
the noise-free preprocessor transfer characteristic results in a
reduction of resolution at certain input values, as shown in
Fig. 3. Second, significant prequantization noise reduces the
number of meaningful output values even with an increase
in number of quantizer bits. For both cases, it is useful to
examine the preprocessor’s ability to differentiate a small load
event given values for B, N , and some base load.

If the prequantization noise is sufficient to linearize the
average preprocessor transfer characteristic, the minimum re-
solvable power will be independent of any base load value.
The minimum power that can be resolved by the preprocessor,
Pmin, can be estimated as σP . The linear signal-to-noise
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ratio G from Eq. (14) can be related to σP from Eq. (13).
Imax/

√
2G can be substituted for σG and Imax/(2B−1

√
12)

for σQ. Since the maximum power detectable by the sys-
tem can be approximated as, Pmax = Vrms · Irms, where
Irms = Imax/

√
2, the following equation for Pmin/Pmax can

be derived:

Pmin
Pmax

=

√
1

N

(
1

G
+

2

3 · 4B
)
. (17)

For example, this can be calculated for the USCG Cutter
MARLIN example in Fig. 10b over a window between t =
1.75 s and t = 3.25 s. The standard deviation of the real
power preprocessor output is computed to be approximately
22.7 W, which will be used as Pmin. Since the rms voltage is
254 V and the maximum quantizable current signal is 300 A,
Pmax is found to be 53881.5 W. Thus, the ratio of Pmin to
Pmax is 1 : 2374. This implies that all other parameters being
constant, increasing the maximum observable power (likely by
changing Imax) will increase the minimum observable load
power by the same factor, providing a heuristic for the range
of observable values. Pmin/Pmax can be related to ENOB
through the following equation:

ENOB = − log2

(√
3 · Pmin

Pmax

)
. (18)

Either Pmin/Pmax or ENOB can be used to quantify the
ability of a system to resolve small loads.

If prequantization noise does not linearize the average pre-
processor transfer characteristic, the system’s resolution will
be lower at the nonlinear regions of the transfer characteristic.
For example, in Fig. 2a, between an input power of approx-
imately 12 W to 18 W, there will be very little difference
in the output value assigned. What counts as “resolvable”
is application-specific. For example, consider a correlation
matching algorithm with a set tolerance [18]. If a match
tolerance of 20% is chosen, a load event is considered to be
resolvable if the difference in preprocessor outputs is within
20% of the actual load value. Considering the base and small
load scenario, different base load values can be iterated, and
for each, the minimum small load value is found that yields
a preprocessor output difference within the desired tolerance.
Finding a closed-form solution for this value for any given
match tolerance is not tractable, but in general, the worst
case is at the first inflection point, when the preprocessor
output becomes non-zero (e.g., at approximately 6.2 W in the
Fig. 2a). For power monitoring applications, it is unlikely that
the preprocessor would operate in this nonlinear situation, as
only approximately half of an LSB of rms noise current signal
is required to linearize the average transfer characteristic.

E. Design Scenarios

The presented techniques can inform system design. Given
three fixed or desired parameters, Eq. (17) can be used to
solve for the variable of interest. In the first scenario, N and
SNR are fixed and there is some requirement on the minimum
resolvable load, which fixes Pmin/Pmax. This scenario could
be brought about by design of data acquisition hardware at

some required sampling frequency in an environment with
a known amount of noise. Here, solving for B will yield
the number of input quantization bits necessary to meet the
resolution requirement. However, it is not always possible to
meet the desired requirements by only tuning B, as there is
no realizable value of B that will yield a Pmin/Pmax of less
than

√
1/(NG). In the second scenario, N and B are fixed,

perhaps due to use of specified data acquisition hardware, and
Pmin/Pmax is set to some desired value. Solving for the min-
imum SNR for such a resolution requirement allows a system
designer to evaluate potential sensor placements. That is, can
a sensor be placed “upstream” to monitor a larger and most
likely noisier system, or are multiple “downstream” sensors
required? Similar to the first scenario, Pmin/Pmax is lower
bounded. In this scenario, the lower bound is

√
2/(3 · 4B ·N),

so even an infinite SNR will not meet every requirement.
Finally, in the third scenario, N and B are again fixed due
to prespecified hardware. SNR is also fixed in this scenario,
which may be due to unavoidable noise in the installation
environment. By solving for Pmin/Pmax, the designer can
understand which loads can and cannot be resolved in this
installation.

VI. CONCLUSION

Spectral envelope preprocessing can enhance system res-
olution beyond that of the input quantizer. Prequantization
noise can be either a benefit or a drawback depending on
the amount introduced. A lack of prequantization noise will
result in a nonlinear preprocessor transfer characteristic. An
excessive amount of prequantization noise will cause prepro-
cessor systems with different numbers of input quantization
bits to operate at similarly poor effective resolutions. By
adapting the concept of effective number of bits to the spectral
envelope preprocessing system, this effect can be evaluated
quantitatively for a proposed preprocessor design given the
number of quantizer bits, number of points in the averaging
window, and signal-to-noise ratio. The ratio of minimum
resolvable power to maximum resolvable power can be derived
for the preprocessor configuration to describe the system’s
ability to resolve small loads.
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