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Abstract— Energy harvesting sensors scavenge energy from their
surroundings to power themselves without a battery or utility-
connected power supply. Sensors that avoid batteries and bespoke
power wire connections offer flexibility for avoiding complications
in safety and infrastructure. Energy from the sensor’s environment
often arrives intermittently or stochastically, complicating the sen-
sor design process. The size of on-board energy storage becomes
a critical design decision. Energy storage allows the harvesting
system to accumulate energy over time that can later be consumed
for sensor tasks. This article presents a modeling and design guide
for sizing sensor energy storage. These guidelines balance the
tension between cold-start time and steady-state endurance. Cold-
start time and steady-state endurance, as a function of energy storage design parameters, are quantified and analyzed
with respect to both deterministic and stochastic energy harvest profiles. Results are demonstrated using experimentally
measured power consumption data from an industrial machine on a microgrid. Two practical sensor storage design
examples demonstrate the design guide. Simulation results highlight the very restrictive storage unit design space over
which both fast boot-up and sufficient endurance are satisfied for a notional sensor application. The negative effect of
oversized storage on overall sensor on-time over long time periods of thousands of hours is also demonstrated. These
results emphasize the significant impact of storage unit startup and maximum voltage threshold design choices and their
ability to reduce a required storage capacitance by over an order of magnitude to meet the same application requirements.

Index Terms— Batteryless, cold-start, energy harvesting, energy storage design, Markov chain, stochastic, sensor
interface electronics.

I. INTRODUCTION

SENSOR nodes that can “live off the land” avoid battery
or bespoke power wiring requirements. The safety risks

[1] of lithium-ion batteries hinder the deployment of battery-
powered sensors in mission-critical settings. Energy harvesting
provides an alternative. Harvesting, storing, and using energy
from the sensor’s ambient environment unlocks a pathway to
less costly installation and reduced maintenance requirements.
Furthermore, harvesting sensors can be co-deployed with
batteries or other energy sources to reduce battery replacement
maintenance and schedules.

Fully batteryless energy harvesting systems present unique
challenges for designers. Ambient energy may arrive inter-
mittently, and depending on the source (e.g. vibration, solar,
electromagnetic radiation, etc.) may be relatively miserly. Bat-
teryless sensors may need to perform tasks such as measure-
ment and data transmission when little or no ambient energy is
present, without relying on a battery as a stable power supply.
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To sustain sensor device operation over long time periods, an
energy harvesting sensor must employ some energy storage.
Proper design allows energy storage, like a capacitor, to hold a
sufficient reservoir of harvested energy for the sensor to use as
it completes tasks. Much of the self-powered sensing literature
discusses sizing of the energy storage unit relative to desired
sensor tasks and monitoring the stored energy to sustain
operation [2]–[8]. Although many of these analyses recognize
the intermittent nature of energy harvest, they often do not
formally model ambient energy availability as a stochastic
process. Additional techniques for increasing sensor lifetime
and/or performance in intermittently-powered energy harvest-
ing nodes and networks include [9]–[12]. These references
augment controllers to model capacitive energy leakage [9],
economically save system state just before brownouts [10],
consider both sensor task energy consumption and deadline
requirements [11], and adjust sensor node sample frequency
in response to both the signal of interest and the node’s
stored energy level [12]. Such examples are typically active
control strategies that run in real-time during sensor oper-
ation. This paper, alternatively, presents tools for informing
the sensor storage design process, modeling energy harvest
profiles quantitatively in both deterministic (but time-varying)
and stochastic cases.
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Stochastic effects on energy production and harvest have
been studied in some existing literature. Some works concern
grid-level energy production, storage, distribution, and/or con-
sumption [13]–[17]. For low-power sensors, existing works
have analyzed the uncertainty in design parameters or excita-
tions of vibrational energy harvesters [18]–[20]. Randomness
in ambient wind and solar energy for predicting energy har-
vest in wireless sensor networks has also been studied [21].
A recent work also demonstrated Gaussian mixture model
techniques to simulate the performance of a battery-powered,
hybrid energy harvesting sensor system [22]. Other stochastic
energy harvester works focus on optimizing task distribution or
communication protocols between nodes in energy harvesting
sensor networks [23]–[25].

Unlike some existing work that considers stochastic energy
harvesting [26], our work primarily concerns the design and
performance of a batteryless sensing system. Accordingly,
our analysis demands modeling of the cold-start phase of a
harvesting sensor, where the system boots itself up from an
initial state of zero stored energy. Our modeling and design
approach is illustrated with stochastic ambient energy models
derived from experimental datasets of industrial equipment.
Although applied to example sensors with capacitive energy
storage, our approach is not specific to a particular energy
harvester technology or stochastic harvest model. Rather, these
example sensor designs illustrate this approach that provides
statistical insight and rigor to the design process of sizing en-
ergy storage for batteryless sensing. The techniques presented
in this paper are broadly applicable to a variety of energy
harvester technologies and sensor devices.

Previously, Munir and Dyo illustrated a key design tradeoff
for the storage element of a batteryless radiofrequency (RF)
energy harvesting sensor [27]. Specifically, small capacitors
promote fast startup, but large capacitors are capable of
servicing energy-intensive sensor tasks [27]. In response to
the competing design interests and a recognition of the indeter-
minate nature of energy harvest, Munir and Dyo introduced a
Kalman filter and hybrid storage solution that actively switches
between a small and large capacitor for storage, depending
on the estimated available energy storage and harvest [27].
Unlike [27], our paper emphasizes the storage unit voltage,
in addition to the capacitance, as a design variable, which we
demonstrate to have a significant ability to reduce capacitor
sizing due to the quadratic relation between stored energy
and voltage across the capacitor. Our paper expands the
storage sizing design tradeoff discussion that was presented
in [27] to include rigorous mathematical formulas for sizing
storage according to power harvest and sensor device power
consumption profiles. While both our paper and [27] concern
batteryless energy harvesters in environments where harvesting
is stochastic, the methods for addressing indeterminate energy
harvest are notably different. The Kalman filter strategy of [27]
is especially useful for actively managing the storage unit in
real-time during system operation, whereas the arrival process
and Markov chain framework we present below are design
tools for sizing a storage unit and estimating its startup and
long term steady-state behavior.

The key contribution of this paper is the application of a
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Fig. 1: Simplified power flow diagram of a batteryless energy
harvesting sensor unit.

quantitative framework to the startup phase and steady-state
operation of a batteryless sensor. With this analysis, designers
can size energy harvester storage units in an informed way that
accounts for variability and intermittence in energy harvesting
times and magnitudes.

II. DESIGN GOALS AND PROBLEM FORMULATION

Fig. 1 displays a high-level power flow diagram of an
idealized batteryless energy harvester sensor unit. The system
contains an energy storage level ES(t) that is filled by a
harvester source providing power pH(t) and drained by an
attached sensor device consuming power pD(t). We have
deliberately presented these as generic functions, although
each energy harvester and sensor application will, of course,
beget its own specific harvest and consumption profiles. For
example, for a wearable sensor application, a hybrid solar-
thermoelectric energy harvest profile was first experimentally
recorded as subjects wore the harvester platform over the
course of several days [28]. A number of methods for predict-
ing the hybrid harvester’s energy harvest, including a modified
Kalman filter, were then presented [28]. An extensive review
of energy harvest prediction methods, including methods that
rely purely on past harvest information, a combination of
past harvest information and some environmental model, and
machine learning strategies, is given by Yuan et al. [29]. As
we demonstrate in Section V of this paper, a pH(t) power
harvest profile can also be derived from physical models
of the harvester and statistics describing the environmental
conditions in the prospective harvester installation site.

Several methods exist for estimating or measuring device
power consumption profiles pD(t). Simple, standard strategies
are benchtop power measurements, simultaneously measuring
the supply voltage of a sensor package and its current con-
sumption over the course of operation using digital multime-
ters and oscilloscopes. Recently, commercial products, such as
the Joulescope, specifically tailored to power measurements
and profiling of low-power embedded systems have also
become available [30]. A clever approach for online sensor
power profiling by tracking the switch frequency of pulse
frequency modulated (PFM) sensor power supplies has been
proposed in existing literature [31]. Works such as [32] and
[33] present mathematical models for quantifying the power
consumption of low-power sensor devices at the individual
component and greater system level. In sum, a pD(t) profile
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Fig. 2: Stored energy over time for the batteryless system. ES(t) varies according to Eq. (3). Self-discharge loss of the storage
unit continually drains ES(t) even when the device is disabled for ES(t) ≤ EMIN.

can be measured or estimated with existing strategies, given
sensor application requirements.

Ideally, the energy storage of a batteryless sensor node is
lossless, such that ES(t) remains constant when both pH(t)
and pD(t) are zero. In practice, however, the energy storage
will exhibit some inherent loss, due to, for example, the self-
discharge characteristics of a capacitor. Generally, the lossy
behavior of the storage element can be modeled by a loss
profile pL(t). Fig. 2 shows key energy storage states that
constrain this model. ES(t) initially charges from a completely
depleted state until it reaches a critical value ESTART, at which
point an electronic control system allows the attached device
to consume power. The operating regime after ES(t) has
reached ESTART is referred to as “steady-state operation.” Dur-
ing steady-state operation, ES(t) is ideally bounded between
EMIN and EMAX. These limits follow from a hysteretic control
scheme that disables the attached device (that is, sets pD(t)
to zero) whenever ES(t) has depleted to EMIN and prevents
additional energy storage above EMAX by disconnecting or
redirecting additional power harvest away from the storage
unit. More precisely, the self-discharge pL(t) of the storage
element is capable of draining ES(t) below EMIN even when
the sensor device is disabled. The device is re-enabled once
ES(t) charges to at least ESTART again. Within its minimum
and maximum bounds, ES(t) varies depending on the values
of pH(t), pD(t), and pL(t).

For a capacitive energy storage unit with capacitance C, the
instantaneous energy stored is

ES(t) =
1

2
C[V (t)]2, (1)

where V (t) is the instantaneous voltage across the capacitor.
This work provides techniques to quantify the effect of design
parameters such as C, ESTART, and EMAX, on the startup
and steady-state endurance of a batteryless sensor. A tension
exists between these two problems, as a large capacitor can
store significant energy for steady-state endurance, but requires
a long startup charging time. Conversely, a small capacitor
charges quickly, but may not store sufficient energy to endure
the sensor application’s power consumption. Our goal in
this paper is to provide an analytical framework with which
batteryless sensor designers can size energy storage.

Assuming the storage exhibits a relatively depleted energy
level ELOW at some time t = t0, the following equation
describes the cold-start time tSTART, at which point an attached
device can operate:

ESTART =
1

2
CV 2

START =

∫ tSTART

t0

pH(t)−pL(t) dt+ELOW. (2)

Here, ESTART is a stored energy startup threshold chosen
by a designer. Practically, ESTART is sized according to C
and VSTART, the voltage across the storage capacitance at time
tSTART. A conservative design, from a startup perspective,
may assume full depletion at t0 (ELOW = 0), but in many
practical settings a depleted storage unit will have some
small but nonzero stored energy due to the inherent discharge
characteristics of capacitors.

Analysis for steady-state operation focuses on the following
equation:

dES(t)

dt
=


−pD(t)− pL(t) ∀t : ES(t) ≥ EMAX

pH(t)− pL(t) ∀t : 0 ≤ ES(t) ≤ EMIN

∆p(t) otherwise
, (3)

where
∆p(t) = pH(t)− pD(t)− pL(t). (4)

Next, we apply the above formulas to “deterministic” energy
harvester cases, where energy arrives in predictable events.
In Section IV, we analyze stochastic energy harvester cases,
where energy harvest arrival time and magnitude are random.

III. DETERMINISTIC ENERGY HARVEST

A deterministic power harvest profile, for example, might
be described as a piece-wise linear profile:

pH(t) =



0 0 ≤ t ≤ t1

P0 t1 < t ≤ t2

0 t2 < t ≤ t3

P1 t3 < t ≤ t4

...

. (5)

Another harvest example is a completely constant profile:

pH(t) = P0. (6)
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Fig. 3: An event-driven spin-down sensor cold-starts and
operates to depletion per every load operating cycle. Self-
discharge loss is a continuous drain on the storage for t > 0,
and its effect continues to slowly drain the stored energy even
after the device is disabled at tEND.

More complex, but well-characterized functions, like sinusoids
or pulsatile waveforms, may also represent deterministic en-
ergy harvest for other harvester technologies. Given pH(t), our
design goal is to size an energy storage unit that meets both
a minimum startup time specification and a minimum sensor
on-time duration over a steady-state time interval of interest.

While sensor nodes have a variety of use profiles, one can
consider the broad class of “event-driven” sensors. An event-
driven sensor must detect and record information in response
to the occurrence of a specific “event” in its environment. Ex-
ample applications of event-driven sensors are found in insect
and plant monitoring [34], camera-based object detection [35],
and spin-down monitoring of industrial machines [36], [37].
Many event-driven sensors are prime candidates for batteryless
sensing. This guide allows informed energy storage design for
such sensors.

Consider for example the design of a spin-down sensor for
a rotating electromechanical machine [36], [37]. A batteryless
magnetic energy harvester-equipped sensor, for example, could
power itself by harvesting energy from the magnetic fields
present around the machine’s wires as this load draws electri-
cal current. As shown in Fig. 3, the event-driven sensor cold-
starts, performs its tasks, and depletes its storage, in response
to a single operating cycle event of the electromechanical load
it senses. Assuming fixed minimum and maximum voltage
bounds, VMIN and VMAX, on the capacitor, the challenge is
finding a C and VSTART combination that allow the unit to
complete startup prior to tSD, while also storing enough energy
to perform the sensing application once the device is enabled.
Throughout the analysis below, we assume a constant loss
characteristic pL(t) = PL for simplicity.

A. Cold-Start Analysis

With reference to Eq. (2), let t0 = 0, and assume ELOW =
ES(t0) = 0. This assumption of total depletion at time t0 in
the following analysis provides a conservative design, which
demands the storage must be capable of charging from a
state of full depletion during the harvest event. Under these
assumptions, an integration of Eq. (2) yields tSTART for a given
ESTART. For a constant power harvest profile, we have

tSTART =
ESTART

P0 − PL
=

C V 2
START

2(P0 − PL)
. (7)

The success criteria for cold-start time is

tSTART ≤ tSD − ϵ, (8)

where ϵ represents any non-negligible initialization time for
the sensor device that occurs between when it is first enabled
at tSTART and when it can begin performing its core task(s). If
the cold-start success criteria is not met, then the system has
not booted up fast enough to sense the event of interest.

B. Steady-State Endurance

After startup, the sensor begins operation of its task(s).
For simple illustration, we now assume a constant power
harvest profile pH(t) = P0, a sensor device power consumption
pD(t) = PD > P0 when enabled, and a device operation time
specification ∆tD that is the necessary runtime for the device
to complete its task. An event-driven sensor operates for a
time duration

∆tON = ∆tON,A +∆tON,B, (9)

where ∆tON,A and ∆tON,B represent the sub-durations of ∆tON
over which pH(t) ̸= 0 and pH(t) = 0 respectively. For the
constant power harvest profile pH(t) = P0 we have

∆tON,A =
ES(tSD)− ESTART

P0 − PD − PL
, (10)

and

∆tON,B =
EMIN − ES(tSD)

−PD − PL
, (11)

where ES(tSD) is the stored energy at the spin-down time. If
∆p(t) is sufficiently negative, the device will black out prior
to time tSD due to depleted storage, and thus ∆tON,B = 0. This
yields a total runtime

∆tON =
EMIN − ESTART

P0 − PD − PL
. (12)

If the event-driven application requires sensing for t > tSD,
then this design has failed. Otherwise, the design has suc-
ceeded as long as ∆tON ≥ ∆tD.

If ∆p(t) is not sufficiently negative to deplete the storage
prior to tSD, then ES(tSD) > EMIN and ∆tON,B > 0. With
reference to the spin-down sensor of Fig. 3,

∆tON,A = tSD − tSTART, (13)

and
∆tON,B = tEND − tSD. (14)
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The total on-time of the load and tSD can be determined
from measured electromechanical load profile statistics, as will
be demonstrated in the case study of Section V. Since each
ESTART in the design space yields a known tSTART according to
Eq. (7), ∆tON,A can be calculated using Eq. (13). Combining
Eq. (10) and Eq. (13) yields a solution for ES(tSD), from which
∆tON,B can be calculated to obtain the total runtime according
to Eq. (9).

The steady-state success criterion for an event-driven sensor
is generally described as follows:

∆tON ≥ ∆tD. (15)

If this success criterion is not met, then the device has blacked
out prior to completing its application due to depleted energy
storage. Further constraints on this success criterion, such as
the necessity for sensing during t > tSD, can be added for
each event-driven sensor’s target application. It is relevant to
note that the device runtime ∆tD and power consumption PD
could also exhibit some variability. While the sensor designer
can assert a great degree of control on the sensor power con-
sumption profile pD(t) by implementing a deterministic task
schedule or application, the designer should also be mindful
of tasks that are especially vulnerable to consumption profile
variability. A wireless data transmission task, for example,
from the sensor node to a central beacon could be subject
to network latency that manipulates the “ideal” device power
consumption profile. In such cases, a designer should use a
device consumption profiling technique, like those described
in Section II, to characterize pD(t) variability. With a better
understanding of the sensor task uncertainty, one can adjust the
∆tD or PD accordingly to reflect worst-case profile conditions
and produce a conservative storage design.

This section analyzed cold-start time and steady-state en-
durance under known power harvest conditions. For event-
driven sensors, even if the occurrence of nonzero pH(t) harvest
events are infrequent or stochastic, the duration and magnitude
of nonzero power harvest may be well known. The sensor can
be designed to boot up, operate, and deplete on a “per-event”
basis according to the equations presented above.

Alternatively, one can consider a “time-distributed” sensing
application. In time-distributed sensing, tasks are not intended
to be performed in response to specific environmental triggers.
Instead, the sensor should exhibit a high on-time over long
timescales, between nonzero power harvest events. A stochas-
tic framework can account for randomness in both arrival time
and magnitude of energy harvest over long time periods.

IV. STOCHASTIC ENERGY HARVEST

In many energy harvesting application spaces, the ambient
energy availability is non-deterministic. For example, sunlight,
wind, and industrial load patterns are often characterized with
probability distributions [17], [26], [38]. These random inputs
make startup time and steady-state behavior probabilistic.
Probabilistic modeling and data analysis provide statistical
measures of startup time and steady-state operation to aid
the storage design of a self-powered sensor. This probabilistic
analysis is especially useful for time-distributed sensing. In

contrast to event-driven sensing, time-distributed sensing does
not demand sensing in response to a specific environmental
trigger. Instead, the design goal is to maintain a large fraction
of sensor on-time even when power is not being actively
harvested. This section models energy harvest opportunities
that occur randomly as arrival processes. Startup time is
quantified from the interarrival times and magnitudes of energy
harvest events. Steady-state endurance is estimated using a
Markov chain framework, where the stored energy is described
by a Markov state space. The state space is traversed accord-
ing to stochastic energy harvest events, deterministic device
consumption, and storage self-discharge.

A. Cold-Start Analysis: Arrival Process

Arrival processes model random discrete events on a system
of interest. Considering random energy harvest opportunities
as an arrival process allows for a quantification of cold-start
time, even when power harvest is non-deterministic. Armed
with a probability distribution of harvest opportunities, a
designer can use the following tools to predict the startup time
of a batteryless sensor.

For any arrival process, the time Sn of the nth arrival into
the system is the sum of the interarrival times over [1, n]. That
is,

Sn =

n∑
i=1

Xi, (16)

where Xi is the ith interarrival time of the stochastic harvest
profile. During startup, the device is disabled, and a fixed
amount of energy Ein is accumulated in the storage after each
harvest event. The distribution of Sn describes the startup
behavior of this energy harvesting sensor. The value of n
for which ES(Sn) is greater than ESTART corresponds to the
number of energy harvest events required to cold-start, for
lossless storage. Given a probability distribution of Xi and this
number of events, Eq. (16) yields the distribution of the time
required for all of these events to arrive. From this distribution,
a designer can derive statistics such as the expected cold-start
time.

One can consider, for example, a batteryless magnetic
energy harvester installed on the electrical cabling of an indus-
trial heater or motor with the intent of measuring temperature
in the nearby environment throughout the day. This first design
question concerns how long it will take, or in other words,
how many energy harvest arrivals must occur, for this sensor to
boot-up and begin sensing. If the energy harvesting interarrival
times are well modeled as exponential random variables, the
process is Poisson and each Xi has a cumulative distribution
function (CDF)

FXi
(x) = 1− e−λx, (17)

where Xi is the random variable and λ is the rate parameter
that characterizes the Poisson process. The sum of N inde-
pendent exponential random variables with rate parameter λ
is Gamma-distributed. Thus, the nth arrival time is distributed
as a Gamma random variable with α = n and β = λ, i.e.,
Sn ∼ Γ(α = n, β = λ) [39].
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Fig. 4: Energy harvester state space. For clarity, the complete transition path arrows to higher energy states are only shown
for the EMIN state. The EMIN state is shown corresponding to the k-th element of the transition matrix.

The number of arrivals to reach a desired energy level
ESTART is

NSTART =

⌈
ESTART

Ein

⌉
. (18)

The distribution of the “NSTART-th” arrival time (SNSTART )
provides insight into the required startup time of a harvester
connected to a load with a specific statistical turn-on profile.
The impact of lossy storage may be significant if startup
time or loss terms are large. A check on the estimated
startup time versus storage loss models can reveal whether the
startup time estimate is reasonable or if additional modeling
or correction factors are necessary. For example, if the sensor
would nominally start up within a few hours and the storage
losses would require many days to drain the storage unit, the
lossless assumptions should provide reasonable estimates.

This arrival process framework also supports analysis when
both the magnitude and times of harvested energy are random.
For example, for the same arrival process but with independent
and identically distributed (IID) energy harvest magnitudes,
the stored energy becomes a compound Poisson random vari-
able,

ES(t) =

N(t)∑
i=1

Ein,i, (19)

where N(t) is the Poisson-distributed integer-valued number
of arrivals at some time t and Ein,1, Ein,2, ..., Ein,N(t) are
IID random variables that describe the energy harvest for
the i-th harvest event. A characterization through moments
(expected value and variance) and probability inequalities
provides informative expressions on expected cold-start time.

B. Steady-State Endurance: Discrete-Time Markov
Chain

Our steady-state design goal in time-distributed sensing
applications is to ensure high device on-time between energy
harvest opportunities. To quantify the steady-state endurance
of the energy harvesting sensor in stochastic cases, a Markov
chain approach is proposed. Stored energy levels are dis-
cretized into the states of a Markov chain. The stochastic
harvesting, as well as the self-discharge of the storage and
the controlled device power consumption are captured as
probabilistic transitions between the stored energy states. Fig.
4 shows a diagram of the Markov chain state space for the
energy harvesting sensor. At any integer multiple of a time
step ∆t, the model assumes ES is equal to some level in this
state space. The stored energy traverses this state space due to

energy harvest, energy consumption, and self-discharge. The
state space is constrained within ELOW and EMAX bounds as
described above. The Markov analysis presented here accom-
modates lossless or lossy energy storage. Similar to Section
III, the analysis in this section uses a constant storage loss
term pL(t) = PL.

In general terms, the Markov property defines Markov
models and states as follows:

P{Xn+1 = j|Xn = i,Xn−1 = k, ...,X0 = l} =

P{Xn+1 = j|Xn = i}. (20)

That is, the random variable Xn+1 (the next state) depends on
the past random variables only through the most recent random
variable Xn (the current state). The probability of jumping
from state i ∈ S to some other state j ∈ S at the next time
index is a transition probability, denoted as pij . The transition
probability matrix P fully characterizes a discrete-time finite
Markov chain:

P =


p11 p12 . . . p1m

p21
. . .

...
pm1 pmm

 . (21)

This Markov chain framework provides an extremely valu-
able design insight. Building P , calculating P∞, and evalu-
ating the resulting matrix reveals the fraction of time spent
in each stored energy state over the long run. Thus, faced
with stochastic harvesting, a designer can confidently estimate
the amount of time the device operates according to the
amount of time spent in energy states greater than ESTART.
The construction of the state space and probability matrix
are essential steps for this powerful design tool. In a time-
distributed sensing application, the device has two distinct
modes of operation: “on” and “off”. If ES(t) > EMIN, the
device is on and sensing. If ES(t) ≤ EMIN, the device is off
and not sensing. The two modes partition the Markov chain
state space, such that each state belongs to one of the two
modes. In the off region of the state space, adjacent levels
state space are spaced by ESTEP,OFF = (∆t)PL. In the on
region of the state space, adjacent state space levels are spaced
by ESTEP,ON = (∆t)(PD + PL). These are the amounts of
energy dissipated over ∆t in each operating mode. The number
of levels in the state space is either set explicitly and the
corresponding ∆t automatically calculated from above, or the
∆t is set and the number of levels calculated.
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The transition probability matrix entries require the prob-
ability that a harvest event arrives over the time interval of
interest and the probabilities that the storage gains certain
amounts of energy as a result. For example, in a Poisson
arrival process, the probability that an arrival occurs within
the timestep ∆t is

P {Arrival in ∆t} = λ(∆t)e−λ(∆t). (22)

For a small ∆t, probability of two or more arrivals is small and
approximated as zero. Therefore the probability of no arrival
in ∆t is one minus the above single-arrival probability. The
harvester transitions to the lower energy state with probability
of no harvest arrival. Otherwise, the harvester transitions to
a higher energy state with the probability of an arrival in ∆t
and the probability that an appropriate net energy has been
accumulated. For example, the transition probability to jump
3 energy levels in the state space is

P
{
(Arrival in ∆t) ∩

(⌊
ENET

ESTEP

⌋
= 3

)}
, (23)

where ENET = EH − (ED + EL), the difference of harvested
energy and the total drain on the storage (the sum of device-
consumed energy plus storage self-discharge energy) over the
duration of the arrival event. Arrival time and energy harvest
are assumed independent, and this probability simplifies to
multiplication of the probabilities of the individual events.
The details of a specific power harvest profile dictate the
distribution of ENET.

The above analysis demands modeling approximations to
ensure that the Markov property (i.e., that the next state
depends only on the present state) is not violated. First,
a hysteretic controller, which is inherently not memoryless
of state, violates the Markov property. Thus, as mentioned
before, this analysis uses ESTART = EMIN + ESTEP,ON. In
other words, the sensor device is enabled whenever stored
energy is greater than EMIN, eschewing hysteresis modeling.
Next, in general, the power harvest and dynamics of the
stored energy depend on the duration of energy harvest events.
This temporal dependency, a timekeeping of nonzero power
harvest durations, violates the Markov property. Alternatively,
if nonzero energy harvest (pH(t) > 0) on-times are compressed
into a single time instant, the Markov property holds. This
adaptation confines the Markov chain analysis to times when
power harvest is zero and is referred to in this paper as
“compressed time.” This is suitable for self-powered sensor
cases in which the instantaneous power harvest is much greater
than the device’s power requirement. In other words, device
operation is guaranteed when energy harvest is nonzero. In the
compressed time framework, there are only two possibilities at
each time step: either a nonzero harvest event occurs or it does
not. If nonzero harvest occurs, the stored energy transitions
to the state corresponding with the change in stored energy
during that that harvest event, and the model “fast forwards”
to the time instant directly after the power harvest has returned
to zero. Fig. 5 illustrates the compressed time paradigm for a
single nonzero harvest event. The leftmost figures show pH(t)
and ES(t) over a period where harvesting begins at time t0.
The harvester gains enough energy that, when the harvesting

“Real” Time Compressed Time
pH(t)

t

P0

t

ES(t)

pH(t*)

P0

t*

ES(t*)

t*
t0 t1 t0

0 0

0 0

Fig. 5: Compressed time example of a harvest event.

event ends, ES(t) is at a higher energy level than when the
event began. The rightmost figures show the compressed-
time analog to the leftmost plots. In compressed time, the
harvested power is an impulse, or delta function, and the
energy accumulation ENET happens at one instant as a step
change. When power harvest is zero, compressed time is the
same as “real” time, and the harvester depletes some energy
and transitions down one energy state as a device consumes
power and as the storage element self-discharges.

In summary, this framework establishes a recurrent Markov
chain of discrete stored energy states that are traversed ac-
cording to device power consumption, lossy storage, and
stochastic energy harvest arrivals. A transition matrix P can be
constructed based on the probabilities of harvest opportunities,
and estimating P∞ using numerical tools reveals the long term
steady-state convergence to each stored energy state, and thus
the enduring sensor device on-time. Section V-E demonstrates
this process to design the storage stage of a self-powered
temperature sensor.

V. SHIPBOARD LOAD CASE STUDY WITH SENSOR
DESIGN EXAMPLES

Although the energy storage framework presented above
is generally applicable to a variety of harvester sources and
sensor devices, this section presents a representative example
design focused on magnetic energy harvesting. This section
presents measured field data of a candidate load for magnetic
energy harvesting on a marine microgrid. This data informs
two distinct harvester storage design cases, one targeting an
event-driven vibration sensor and the other a time-distributed
temperature sensor. To gather the data, a nonintrusive load
monitor (NILM) was installed on an engine room panel on a
United States Coast Guard (USCG) patrol boat. This vessel
uses a 3-phase 440 V (line-to-line, rms) power grid for its
electrical loads. The NILM measures the line-to-line voltage
waveforms and the line current waveforms at an aggregate
metering point upstream of the ship’s electrical loads. Real
and reactive power spectral envelopes are extracted from the
current and voltage data. The resulting stream contains a
record of every electrical load actuation.
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Fig. 6: Real and reactive per-phase power for one run of
the vacuum pump described in Section V-A. The pump is on
during the shaded interval.

Post-processing techniques disaggregated individual load
power signatures and actuation times over an approximately
two-month time period. Further processing generated load
statistics relevant to magnetic energy harvesting from these
signatures and schedules. Section V-A discusses the candidate
load identified for energy harvesting. Section V-B maps the
load statistics to a power harvest profile pH(t) for use in sizing
storage. Sections V-C, V-D, and V-E present harvester design
parameters and simulation results for the designed energy
storage units in multiple sensor applications.

A. Vacuum Pump
USCG cutter Sturgeon, an 87’ patrol boat, uses a vacuum-

powered sewage system. To create the vacuum, a vacuum
pump is controlled to maintain a pressure setpoint. This pump
is driven by a three-phase, grid-connected induction machine.
Fig. 6 shows the disaggregated real and reactive per-phase
power of a typical vacuum pump run. An event detection
filter and a clustering algorithm identified each actuation of
the pump during underway periods, i.e. when the ship was out
at sea. Taking the difference between each successive pump
turn-on event’s timestamp yielded the interarrival times for the
pump. Fig. 7 shows a histogram of these interarrival times.
The empirical values exhibit a good fit with an exponential
distribution fit with rate parameter λ = 2.08 actuations per
hour.

For each actuation, the per-phase steady-state apparent
power was extracted. Dividing this by the line-to-neutral rms
voltage yielded the per-phase rms current consumed by this
machine for each actuation. A histogram of these rms current
values for each actuation is shown in Fig. 8a. Every actuation
had an associated duration or run time. Subtraction of consec-
utive on-event and off-events yields a sample of durations. Fig.
8b shows a histogram of the run times. Multiplication of the
steady-state current by the actuation run time yields the total
“amp-seconds” of the load actuation. This quantity is propor-
tional to the total energy harvested by a connected magnetic
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Fig. 7: Histogram of interarrival times for each sewage vac-
uum pump actuation.

TABLE I: Vacuum pump statistics while underway.

Current (Arms) Duration (s) Amp-Seconds (Arms s)

Mean (µ) 3.23 30.40 97.76
Std. Dev. (σ) 0.15 6.73 20.63

energy harvester. Fig. 8c shows the histogram of amp-seconds
for each pump run. Table I summarizes the statistics of the
vacuum pump with means and standard deviations.

B. Energy Harvesting Profile
A power harvest profile pH(t) is necessary to inform and

verify our energy harvester sensor design examples. Here,
we focus on a magnetic energy harvester, but an analogous
approach could be applied for different harvester technologies
(piezoelectric, solar, thermoelectric, etc.) once statistics of the
appropriate available ambient energy (vibration patterns, solar
patterns, temperature differentials) for each transducer technol-
ogy are obtained. Magnetic energy harvesters scavenge energy
from the magnetic fields surrounding conductors according
to Faraday’s Law. These harvesters are often configured as
current transformers and consist of a magnetic core clamped
around the conductor from which energy is harvested. Our
previous work has recorded the average maximum power
harvest densities of several state-of-the-art examples in exist-
ing literature [40]. These power harvest densities range from
0.2 mW/(cm3Arms) to 5.3 mW/(cm3Arms), where the power
density is normalized by the cubic volume of the harvester
core material (in cm3) and the rms current flowing through the
conductor from which the harvester scavenges energy (Arms)
[40]. A nominal power harvest density of 2.0 mW/(cm3Arms) is
used in the design examples below, and we assume this power
harvest density holds whenever the load is on. Otherwise,
power harvest is zero. The following examples assume a
harvester installed on a single conductor phase of the vacuum
pump, whose load statistics provide practical Arms values for
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Fig. 8: Load histograms: a) Steady-state per-phase rms current. b) Run duration. b) Pairwise multiplication of rms current and
duration.

use in determining a specific power harvest profile in the
sensor deployment environment. Furthermore, we assume a
magnetic core volume of 5.45 cm3, which is the core volume
of our recently demonstrated batteryless sensor [3].

C. Harvester and Electronic Parameters
Section V-D and Section V-E present energy harvesting

sensor design examples. The goal of these following sections
is not to provide exhaustive results for all sensor applications.
Rather, we aim to present two complementary, practical sensor
design examples that illustrate the usefulness of our general
startup and steady-state analysis framework presented above.
The first design example is an event-driven sensor design,
where ESTART is the key design variable of interest. The
second design example is a time-distributed sensor design,
where EMAX is the key design variable, and the device is
enabled whenever ES is greater than EMIN. We assume for
both examples that each batteryless sensor package is powered
by a current transformer magnetic energy harvester described
in the above subsection. The design is further constrained
by restricting storage capacitor values and voltages within
practical ranges of [10−6 F, 1 F] and [0.6 V, 10 V] respectively.
The wide capacitor value range, practically, spans a variety
of capacitor technologies, from ceramic or metal film up to
supercapacitors. For both of the following design examples, we
assume a conservative constant capacitor self-discharge current
of 5µA, which is on the order of the 1.45µA self-discharge
current of a typical, commerically available 1 F supercapacitor
[41]. We further assume a conservative capacitor voltage level
of 10V, the largest voltage in our design space, for our loss
characteristic, such that

pL(t) = PL = 5µA · 10V = 50µW (24)

in both the event-driven and time-distributed designs.

D. Event-Driven Sensor Design
The event-driven sensor design is motivated by electrome-

chanical spin-down sensor applications, like those described
in [36], [37]. Sensing vibration and back-EMF data during

a motor spin-down can reveal critical insights into machine
health that may be masked during the machine’s steady-
state rotational operation. Here, there is little to no benefit to
operating the sensor device between vacuum pump operations.
Instead, the sensor must successfully cold-start within the
motor’s electrical on-time and maintain its own sensor on-
time long time to capture motor spin-down information before
depleting the storage unit. This presents a prime example
of competing design interests. A small energy storage will
satisfy quick startup but fail to maintain device operation
for a sufficient period of time. A large storage will maintain
sufficient device operation, but will not cold-start fast enough
to capture the desired spin-down event to sense.

According to the vacuum pump statistics presented above,
2.6A rms was the lowest observed current draw of the induc-
tion machine. Thus a constant power harvest magnitude

pH(t) = P0 = 2.6Arms·
2.0mW
cm3Arms

·5.45cm3 = 28.34mW (25)

was assumed. A constant device power consumption pD(t) =
PD = 50mW was also assumed, representing a relatively
power-hungry sensor package. The startup time specification
was chosen as 90% of the load “on” duration. The device
runtime specification ∆tD was chosen as the sum of the
remaining 10% of load on-time and 5 additional seconds
for spin-down sensing. An additional steady-state success
criteria for this spin-down design example was that ∆tON,B,
the device runtime after tSD, must be greater than or equal
to the 5 seconds allotted for spin-down sensing. Consistent
with a conservative design, the storage is assumed completely
depleted at t = 0.

Fig. 9 plots the C and VSTART combinations for which
both the cold-start and steady-state specifications are met.
Successful, passing designs are shown for examples that
assume the load on-time is its mean value (µ) recorded
in Table I, as well as the mean on-time plus or minus 2
standard deviations (±2σ). These deviation choices are arbi-
trary and purely illustrative, corresponding to strictly positive
on-durations of different lengths to demonstrate each case’s
successful design space. Although Fig. 9 shows the effect of
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Fig. 9: 2-D mapping of the VSTART and C design space for
three event-driven sensor designs.

deviations in load on-time, similar design maps can be pro-
duced concerning variation in other design parameters, such as
power harvest magnitude, startup time requirements, or steady-
state endurance requirements. As discussed in Section III-B,
device consumption variability could be a notable concern in
certain applications. A design map that highlights successes
and failures over multiple ∆tD and PD variations could prove
especially useful for such designs. This example demonstrates
the extremely restricted ESTART design space over which the
event-driven spin-down sensor meets its application require-
ments in a realistic deployment scenario.

E. Time-Distributed Sensor Design

This time-distributed sensor design is broadly motivated
by environmental and asset monitoring applications. Such
applications involve periodic measurements of temperature,
air quality, humidity, etc. to track the health of a machine
or working environment. This section uses the analysis and
equations in Section IV with the statistical load profile above
to design the storage stage of a magnetic energy harvester
intended to sense temperature. A temperature sensor serves as
a concrete example, but the analysis and design objective can
apply to other sensor types. The design goal is to maximize
sensor on-time and minimize the storage capacitor for size,
cost, and startup reasons. In contrast to the event-driven case,
this design assumes VSTART = VMIN, and explores EMAX as a
design variable according to combinations of VMAX and C.

1) Startup: Multiplication of the amp-second histogram
values with the harvester power density and core volume yields
the estimated energy harvests for each electromechanical load
turn-on event. The average harvested energy per harvest event
exceeded 1J. Even with the largest capacitor value included
in our design space, C = 1F, the startup threshold EMIN =
ESTART = (1/2)CV 2

MIN = 0.18J. In this design example, due to
large harvests and low VMIN = 0.6V, the harvester cold-starts
within the first load turn-on event for all capacitance values in
the design space C = [10−6 F, 1 F]. Therefore, regardless of
capacitance value, the startup time is the first harvest arrival
time, which is an exponentially distributed random variable.
The additional modeling of Section IV-A would apply if the
EMIN threshold was higher or the harvest values were lower
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Fig. 10: Histogram of net harvested energy per energy harvest
arrival.

such that it took multiple load turn-on events to accumulate
charge and startup the device. This occurs with higher VMIN,
larger capacitor values, lower harvester power density, and
lower load current consumption.

2) Steady-State: In steady-state, the harvest values minus
the energy drain from the storage element (duration times the
sum of device power consumption and storage self-discharge)
yields samples of the net energy harvested, ENET, for each
harvest event. Fig. 10 shows a histogram of the net energy
harvested for a device power consumption pD(t) = 1mW
and self-discharge pL(t) = 50µW. A Gaussian fit reasonably
models the data, with an average net harvest of 1.034J and a
standard deviation of 0.22J. This Gaussian distribution and the
rate parameter λ feed probability calculations which comprise
the Markov chain transition probability matrix. The simulation
approximates P∞ and uses the first row of the result to
estimate the steady state probabilities of the Markov chain.
The full simulation parameters were:

• pD(t) = 1mW
• pL(t) = 50µW
• VMIN = VSTART = 0.6V
• VMAX = [2 V, 10 V]
• ENET Distribution: N (µ = 1.034 J, σ = 0.22 J)
• Load Rate Parameter: λ = 2.08 arrivals per hour
• ∆t = 5 sec
Fig. 11 shows the result of five Markov chain analyses

and plots the fraction of compressed time that the sensor
is operational versus the storage capacitor size. Simulations
across five values of VMAX demonstrate how the maximum
voltage rating affects steady-state sensor endurance. For this
set of simulations, the VMAX = 10V curve maximizes on-time
for any given capacitor value and provides the largest on-time
of about 56.2% at a capacitor value of 0.12 F. Beyond this
capacitance value, the VMAX = 10V curve decreases because
the probability that the extra storage capacity is used becomes
so small given the arrival rate of the energy harvest events,
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Fig. 12: Verification with time-domain simulation.

while the increased EMIN threshold limits device operation.
Interestingly, because all the VMAX designs share the same
VMIN, the curves converge at large capacitance values once
each of their EMAX values is sufficiently large for this energy
harvesting environment. This Markov analysis reveals some
key design insights. First, it demonstrates that, for a given on-
time fraction specification (e.g. 40%), a designer can reduce
the required capacitance size by roughly an order of magnitude
by choosing a larger VMAX (e.g. 10V versus 2V). Additionally,
the analysis displays that, for a given VMAX choice, there is
an optimal C beyond which larger capacitance values actually
yield a reduced total on-time fraction.

For verification, a time-domain numerical simulation (in
compressed time) of the harvester unit was implemented,
and results were compared with those of the Markov chain
analysis. The simulation used the same parameters listed above

for the Markov chain analysis. The state variable of the
simulation is the storage capacitor voltage (and thus the stored
energy). Exponential random variables for the arrival times of
electromechanical load turn-ons and the arrival magnitudes of
net accumulated energy for each arrival were implemented
with the λ and ENET parameters presented above. The time-
domain simulation selects several realizations of these random
variables. Over a total simulation length of 10000 hours
in compressed time, the stored energy is calculated at fine
timesteps. Clamping the stored energy between the ELOW = 0
and EMAX bounds as necessary, the simulation calculates and
updates the stored energy at each time step according to
device power consumption, self-discharge, and the realization
of the stochastic energy harvest variables. Fig. 12 displays
the Markov chain results with a corresponding time-domain
simulation. There is excellent agreement at VMAX = 8V, and
the simulations match similarly across other voltage levels.

VI. CONCLUSION

This work presented a mathematical framework for sizing
capacitive energy storage units of batteryless sensors. A statis-
tical power consumption profile of an electromechanical ma-
chine was presented. From these experimental power measure-
ments, a power harvest profile for a magnetic energy harvester
was developed and used to inform two practical sensor design
examples, one which emphasizes fast startup in response to
environmental events and another which emphasizes high on-
time throughout periods of no energy harvest. Our design
examples underscore both the capacitance and VSTART and
VMAX storage volage thresholds as design variables that work
in tandem to deliver a satisfactory storage stage for servicing a
batteryless sensor. Leveraging the interplay between C and its
voltage opens design opportunities for reducing capacitor size
and thus overall system volume at the “cost” of higher voltage
thresholds or reducing voltage thresholds at the “cost” of larger
storage capacitance. Furthermore, our results indicate that
excessively large storage capacitances actually contribute to
reduced total fractional on-time when considering intermittent
sensor operation over long time periods. Future work aims
to apply this guide to a variety of industrial equipment from
which statistically-informed power harvest profiles can be
extracted for design. For verification, field deployment of a
batteryless energy harvesting sensor with storage designed
according to the above guidelines also warrants further efforts.
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